Diffusion Bridges Vector Quantized Variational Autoencoders

Max Cohen^{1,2} Guillaume Quispe³ Sylvain Le Corff¹ Charles Ollion³ Éric Moulines³

¹Samovar, Télécom SudParis, Département CITI, Institut Polytechnique de Paris, Palaiseau, France.

²Accenta, Boulogne-Billancourt, France.

³Centre de Mathématiques Appliquées, École polytechnique, Institut Polytechnique de Paris, Palaiseau, France

Thirty-ninth International Conference on Machine Learning

Discrete latent models

Figure: A discrete latent model.

Assume the distribution of the input $x \in \mathbb{R}^m$ depends on a hidden discrete state \mathbf{z}_q , derived from a continuous state $\mathbf{z}_e = f_{\varphi}(x)$, where in practice:

$$p_{\theta}(\mathsf{z}_q = \mathsf{e}_k | \mathsf{z}_e) \propto \mathtt{softmax}(-\|\mathsf{z}_e - \mathsf{e}_k\|), \; \mathsf{z}_q \in \mathcal{E} = \{\mathsf{e}_1, \dots, \mathsf{e}_K\}$$

Discrete latent models

Figure: A discrete latent model.

Assume the distribution of the input $x \in \mathbb{R}^m$ depends on a hidden discrete state \mathbf{z}_q , derived from a continuous state $\mathbf{z}_e = f_{\varphi}(x)$, where in practice:

$$p_{\theta}(\mathbf{z}_q = \mathbf{e}_k | \mathbf{z}_e) \propto \mathtt{softmax}(-\|\mathbf{z}_e - \mathbf{e}_k\|), \; \mathbf{z}_q \in \mathcal{E} = \{\mathbf{e}_1, \dots, \mathbf{e}_K\}$$

Diffusion Bridge

We model z_q as the final sample of a chain $z_q^{0:T}$, associated with a Markov chain of continuous samples $z_q^{0:T}$.

- ► The initial distribution $p_{\theta}(\mathbf{z}_{e}^{T})$ is an uninformative prior;
- ► Each transition $p_{\theta}(\mathbf{z}_{e}^{t}|\mathbf{z}_{e}^{t+1})$ aims at producing a consistent sample through a Deep Neural Network.

$$p_{\theta}(\mathsf{z}_{q}^{0:T}, \mathsf{z}_{e}^{0:T}) = p_{\theta}(\mathsf{z}_{e}^{T})p_{\theta}(\mathsf{z}_{q}^{T}|\mathsf{z}_{e}^{T}) \prod_{t=0}^{T-1} p_{\theta}(\mathsf{z}_{e}^{t}|\mathsf{z}_{e}^{t+1})p_{\theta}(\mathsf{z}_{q}^{t}|\mathsf{z}_{e}^{t})$$

Architecture

Figure: Our proposed architecture, for a prior based on a Ornstein-Uhlenbeck bridge. The top pathway from *input image* to z_e^0 , to z_q^0 , to *reconstructed image* resembles the original VQ-VAE model. The vertical pathway from (z_e^0, z_q^0) to (z_e^T, z_q^T) and backwards is based on a denoising diffusion process.

We approximate the posterior using Variational Inference, by optimizing the following Evidence LOwer Bound:

$$\mathcal{L}(\theta, \varphi) = \mathbb{E}_{q_{\varphi}} \left[\log \frac{p_{\theta}(\mathsf{z}_{q}^{0:T}, \mathsf{z}_{e}^{0:T}, \mathsf{x})}{q_{\varphi}(\mathsf{z}_{q}^{0:T}, \mathsf{z}_{e}^{0:T} | \mathsf{x})} \right]$$

$$= \mathbb{E}_{q_{\varphi}} \left[\log p_{\theta}(\mathbf{x}|\mathbf{z}_{q}^{0}) \right] + \mathbb{E}_{q_{\varphi}} \left[\log \frac{p_{\theta}(\mathbf{z}_{q}^{0:T}|\mathbf{z}_{e}^{0:T})}{q_{\varphi}(\mathbf{z}_{q}^{0:T}|\mathbf{z}_{e}^{0:T})} \right] + \mathbb{E}_{q_{\varphi}} \left[\log \frac{p_{\theta}(\mathbf{z}_{e}^{0:T})}{q_{\varphi}(\mathbf{z}_{e}^{0:T})} \right] \\ \mathcal{L}^{rec} \text{ Reconstruction } \\ \text{cost for the VQ-VAE} \\ \text{architecture.} \right] \mathcal{L}^{reg} \text{ Generalization of the} \\ \text{commitment cost,} \\ \text{proportional to} \\ -\|\mathbf{z}_{e} - \mathbf{e}_{*}\|.$$

The choice of diffusion bridge appears in the last term, over all time steps: $\mathcal{L}^{prior} = \sum_{t=1}^{T} \mathbb{E}_{q_{\varphi}} \left[\log \frac{p_{\theta}(z_{t}^{t}|z_{t}^{t+1})}{q_{\theta}(z_{t}^{t}|z_{t}^{0}z_{t}^{t+1})} \right]$

We approximate the posterior using Variational Inference, by optimizing the following Evidence LOwer Bound:

$$\mathcal{L}(\theta, \varphi) = \mathbb{E}_{q_{\varphi}} \left[\log \frac{p_{\theta}(\mathbf{z}_{q}^{0:T}, \mathbf{z}_{e}^{0:T}, \mathbf{x})}{q_{\varphi}(\mathbf{z}_{q}^{0:T}, \mathbf{z}_{e}^{0:T} | \mathbf{x})} \right]$$

$$= \mathbb{E}_{q_{\varphi}} \left[\log p_{\theta}(x|z_{q}^{0}) \right] + \mathbb{E}_{q_{\varphi}} \left[\log \frac{p_{\theta}(z_{q}^{0:T}|z_{e}^{0:T})}{q_{\varphi}(z_{q}^{0:T}|z_{e}^{0:T})} \right] + \mathbb{E}_{q_{\varphi}} \left[\log \frac{p_{\theta}(z_{e}^{0:T})}{q_{\varphi}(z_{e}^{0:T})} \right]$$

$$\mathcal{L}^{rec} \text{ Reconstruction}$$

$$\text{cost for the VQ-VAE}$$

$$\text{architecture.}$$

$$\text{proportional to}$$

The choice of diffusion bridge appears in the last term, over all time steps: $\mathcal{L}^{prior} = \sum_{t=1}^{T} \mathbb{E}_{q_{\varphi}} \left[\log \frac{p_{\theta}(z_{t}^{t}|z_{\theta}^{t+1})}{q_{\phi}(z_{t}^{t}|z_{\theta}^{t}z_{\phi}^{t+1})} \right]$

We approximate the posterior using Variational Inference, by optimizing the following Evidence LOwer Bound:

$$\mathcal{L}(\theta,\varphi) = \mathbb{E}_{q_{\varphi}} \left[\log \frac{p_{\theta}(\mathsf{z}_{q}^{0:T},\mathsf{z}_{e}^{0:T},\mathsf{x})}{q_{\varphi}(\mathsf{z}_{q}^{0:T},\mathsf{z}_{e}^{0:T}|\mathsf{x})} \right]$$

$$= \mathbb{E}_{q_{\varphi}} \left[\log p_{\theta}(\mathsf{x}|\mathsf{z}_{q}^{0}) \right] + \mathbb{E}_{q_{\varphi}} \left[\log \frac{p_{\theta}(\mathsf{z}_{q}^{0:T}|\mathsf{z}_{e}^{0:T})}{q_{\varphi}(\mathsf{z}_{q}^{0:T}|\mathsf{z}_{e}^{0:T})} \right] + \mathbb{E}_{q_{\varphi}} \left[\log \frac{p_{\theta}(\mathsf{z}_{e}^{0:T})}{q_{\varphi}(\mathsf{z}_{e}^{0:T}|\mathsf{z}_{e}^{0:T})} \right] + \mathbb{E}_{q_{\varphi}} \left[\log \frac{p_{\theta}(\mathsf{z}_{e}^{0:T})}{q_{\varphi}(\mathsf{z}_{e}^{0:T})} \right] \right]$$

$$\mathcal{L}^{rec} \text{ Reconstruction cost for the VQ-VAE architecture.}$$

$$\text{commitment cost, proportional to } \text{commitment cost, proportional to } \text{corrupting and denoising models.}$$

The choice of diffusion bridge appears in the last term, over all time steps: $\mathcal{L}^{prior} = \sum_{t=1}^{T} \mathbb{E}_{q_{\varphi}} \left[\log \frac{p_{\theta}(z_{e}^{t}|z_{e}^{t+1})}{q_{\phi}(z_{e}^{t}|z_{e}^{t}z_{e}^{t+1})} \right]$

We approximate the posterior using Variational Inference, by optimizing the following Evidence LOwer Bound:

$$\mathcal{L}(\theta,\varphi) = \mathbb{E}_{q_{\varphi}} \left[\log \frac{p_{\theta}(\mathsf{z}_{q}^{0:T},\mathsf{z}_{e}^{0:T},\mathsf{x})}{q_{\varphi}(\mathsf{z}_{q}^{0:T},\mathsf{z}_{e}^{0:T}|\mathsf{x})} \right]$$

$$= \mathbb{E}_{q_{\varphi}} \left[\log p_{\theta}(\mathsf{x}|\mathsf{z}_{q}^{0}) \right] + \mathbb{E}_{q_{\varphi}} \left[\log \frac{p_{\theta}(\mathsf{z}_{q}^{0:T}|\mathsf{z}_{e}^{0:T})}{q_{\varphi}(\mathsf{z}_{q}^{0:T}|\mathsf{z}_{e}^{0:T})} \right] + \mathbb{E}_{q_{\varphi}} \left[\log \frac{p_{\theta}(\mathsf{z}_{e}^{0:T})}{q_{\varphi}(\mathsf{z}_{e}^{0:T})} \right]$$

$$\mathcal{L}^{rec} \text{ Reconstruction cost for the VQ-VAE architecture.}$$

$$\mathsf{commitment cost, proportional to commitment cost, proportional to - \|\mathsf{z}_{e} - \mathsf{e}_{*}\|.}$$

The choice of diffusion bridge appears in the last term, over all time steps: $\mathcal{L}^{prior} = \sum_{t=1}^{T} \mathbb{E}_{q_{\varphi}} \left[\log \frac{p_{\theta}(z_{e}^{t}|z_{e}^{t+1})}{q_{\varphi}(z_{e}^{t}|z_{e}^{0},z_{e}^{t+1})} \right]$

We approximate the posterior using Variational Inference, by optimizing the following Evidence LOwer Bound:

$$\mathcal{L}(\theta,\varphi) = \mathbb{E}_{q_{\varphi}} \left[\log \frac{p_{\theta}(\mathsf{z}_{q}^{0:T},\mathsf{z}_{e}^{0:T},\mathsf{x})}{q_{\varphi}(\mathsf{z}_{q}^{0:T},\mathsf{z}_{e}^{0:T}|\mathsf{x})} \right]$$

$$= \mathbb{E}_{q_{\varphi}} \left[\log p_{\theta}(\mathsf{x}|\mathsf{z}_{q}^{0}) \right] + \mathbb{E}_{q_{\varphi}} \left[\log \frac{p_{\theta}(\mathsf{z}_{q}^{0:T}|\mathsf{z}_{e}^{0:T})}{q_{\varphi}(\mathsf{z}_{q}^{0:T}|\mathsf{z}_{e}^{0:T})} \right] + \mathbb{E}_{q_{\varphi}} \left[\log \frac{p_{\theta}(\mathsf{z}_{e}^{0:T})}{q_{\varphi}(\mathsf{z}_{e}^{0:T})} \right]$$

$$\mathcal{L}^{rec} \text{ Reconstruction cost for the VQ-VAE architecture.}$$

$$\mathsf{commitment cost, proportional to commitment cost, proportional to -\|\mathsf{z}_{e}-\mathsf{e}_{*}\|.$$

The choice of diffusion bridge appears in the last term, over all time steps: $\mathcal{L}^{prior} = \sum_{t=1}^{T} \mathbb{E}_{q_{\varphi}} \left[\log \frac{p_{\theta}(\mathbf{z}_{e}^{t}|\mathbf{z}_{e}^{t+1})}{q_{\varphi}(\mathbf{z}_{e}^{t}|\mathbf{z}_{\varphi}^{0},\mathbf{z}_{e}^{t+1})} \right]$

Sampling

Algorithm Sampling procedure

$$\begin{array}{lll} \mathsf{Sample} \ \mathsf{z}_e^T \sim \mathcal{N}(0, (2\vartheta)^{-1}\eta^2 \mathbf{I}_{dN}) \\ \mathbf{for} \ t = T - 1 \ \mathbf{to} \ 0 \ \mathbf{do} \\ & \mathsf{Sample} \ \mathsf{z}_e^t \sim p_\theta(\mathsf{z}_e^t | \mathsf{z}_e^{t+1}) \\ & \mathsf{end} \ \mathbf{for} \\ \mathsf{Sample} \ \mathsf{z}_q^0 \sim p_\theta(\mathsf{z}_q^0 | \mathsf{z}_e^0) \\ & \mathsf{Sample} \ \mathsf{x} \sim p_\theta(\mathsf{x} | \mathsf{z}_q^0) \\ & \mathsf{Sample} \ \mathsf{x} \sim p_\theta(\mathsf{x} | \mathsf{z}_q^0) \\ \end{array} \qquad \qquad \qquad \triangleright \ \textit{quantization} \\ \mathsf{Sample} \ \mathsf{x} \sim p_\theta(\mathsf{x} | \mathsf{z}_q^0) \\ & \mathsf{b} \ \textit{decoding} \\ \end{array}$$

Figure: Sampling denoising chain from t = 500 up to t = 0.

Inpainting

Figure: Conditional sampling for 2 different images, where samples from our diffusion are on top and from PixelCNN on the bottom. Each row contains independent conditional samples, with the original reconstruction on the right.

- ▶ We propose a new mathematical framework for quantized latent models.
- Our methodology focuses on VQVAE but allows sampling from any discrete law.
- To our best knowledge, this is the first probabilistic generative model to use denoising diffusion in discrete latent space.

Inpainting

(a) Centered mask

(b) Top-left mask

Figure: Conditional sampling for 2 different images, where samples from our diffusion are on top and from PixelCNN on the bottom. Each row contains independent conditional samples, with the original reconstruction on the right.

- ▶ We propose a new mathematical framework for quantized latent models.
- Our methodology focuses on VQVAE but allows sampling from any discrete law.
- ▶ To our best knowledge, this is the first probabilistic generative model to use denoising diffusion in discrete latent space.