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["translate English to German: That is good.”

"Das ist gut.”]

"cola sentence: The
course is jumping well.”

"not acceptable"]
"stsb sentencel: The rhino grazed Language
on the grass. sentence2: A rhino Model
is grazing in a field." ”3.8"]

(" )

"summarize: state authorities "six people hospitalized after
dispatched emergency crews tuesday to a storm in attala county.”
survey the damage after an onslaught
of severe weather in mississippi.."

\_ J

Exploring the Limits of Transfer Learning with a Unified Text-to-lext Transformer. Raffel et. al.
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LONG LIVE. THE. REVOLUTION.
OUR NEXT MEETING WILL BE
AT

["translate English to German: That is good.”

[ "cola sentence: The "Das ist gut.”]

course is jumping well.”

"not acceptable"]
["stsb sentencel: The rhino grazed Language

on the grass. sentence2: A rhino Model
is grazing in a field." ”3.8"]

B e —————— "six people hospitalized after
dispatched emergency crews tuesday to a storm in attala county.”

survey the damage after an onslaught
of severe weather in mississippi.."

\_ J

Exploring the Limits of Transfer Learning with a Unified Text-to-lext Transformer. Raffel et. al.

WHEN YOU TRAIN PREDICTIVE MODELS
ON INPUT FROM YOUR USERS IT CAN
LEAK INFORMATION IN UNEXPECTED UAYS,
https://xkcd.com/2 169/
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C4

|. Language modeling training datasets contain many
duplicated sequences (Lee et. al. 202 1)

2. Language models trained on sequence deduplicated

data generate |0x less training data (Lee et. al. 202 1)
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3. Language models can generate long passages that OpenWebText

are repeated In the training data (Mccoy et. al. 2021) 109
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Language Model Privacy Attack (Carlini et. al. 2021)
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Language Model Privacy Attack (Carlini et. al. 2021)
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Language Model Privacy Attack (Carlini et. al. 2021)
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Memorization vs. Duplicates
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Memorization vs. Duplicates
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Memorization vs. Duplicates
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Memorization vs. Duplicates
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Language Model Privacy Attack (Carlini et. al. 2021)
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Language Model Privacy Attack (Carlini et. al. 2021)
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Language Model Privacy Attack (Carlini et. al. 2021)
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Language Model Privacy Attack (Carlini et. al. 2021)
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Language Model Privacy Attack (Carlini et. al. 202 1)
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Deduplicating Training Data Mitigates
Privacy Risk

Does training data deduplication
mitigate privacy risk?




Deduplicating [raining Data Mitigates
Privacy Risk

The first stage of the attack is biased towards

regenerating training sequences that are
duplicated many times!

The second stage of the attack is biased

towards detecting training sequences that are
duplicated many times!

oes trainir

o data deduplication

mitiga:

‘e privacy risk?

Normal Deduped
Model Model
Training Data Count 1,427,212 68,090
Generated Percent 0.14 0.007
Mem. Inference zhib 0.76 0.67
AUROC Ref Model 0.88 0.87
Lowercase 0.86 0.68
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Jakeaways and Future Questions

|. Privacy attack evaluation should take into account data duplication
2. Do similar patterns exist for approximate duplicates?

3. Why are language models miscalibrated?
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