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Introduction

e Motivations of our work

* Integrating long Neural ODE trajectories with numerical integrators can be slow and prone to
error

* There is no straightforward way to constrain the asymptotic stability of Neural ODEs

* We introduce an alternative approach to learning ODEs, by viewing the target ODE
to be connected to a "simpler" ODE. Intuitively, we can use an invertible mapping
to "morph" the simpler ODE into the desired target.




ODE Learning with Neural Network Dynamics

* Chenetal., 2018 introduced Neural ODEs, in which the adjoint method is used to
enable tractable training of dynamics that are parameterised by a neural
network. The integration is performed via a numerical integrator
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ODE Learning as Related Vector Fields

* We view the target ODE as a vector field that is related to an alternative vector
field that is more amenable to integration. A coupling-based Invertible Neural
Network is used to learn the mapping between integrals of the two vector fields
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"Simpler " base ODEs

e Linear ODE as the base

* We can achieve speed-ups of over two orders of magnitude for reasonably length
trajectories, by using the matrix exponential method to solve the ODE

x(t) = Yy (I - xo)rk exp(Aet)
* We can also ensure that the learned ODE will be asymptotically stable, by constraining the
eigenvalues of the base ODE to be negative

 However, the speed-up comes at a cost of flexibility

* Neural Network dynamics as the base
* We can offload learning capacity to both the invertible mapping and base ODE, for added
flexibility

* The base ODE can often be smaller than if we directly parameterise the dynamics of the
target ODE with a neural network. Note that the invertible neural network can be queried in
parallel on a GPU, while a numerical integrator is largely sequential



Experimental Results

* When a linear base ODE is used, we can significantly speed up the integration of
trajectories for a wide range of tested problems

* When a neural network base ODE is used, we observe improvements in learning
difficult ODEs, while being even slightly faster
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Conclusion

We present an alternative approach to learning ODEs: instead of directly
parameterising the system dynamics by a neural network, we view the target ODE
as related to a simpler base ODE. We can integrate trajectories of the base ODE and
find the corresponding trajectories on the target ODE. We study both using a linear
base, and a neural network base -- this allows us to obtain significant speed-ups or
added flexibility.



