Learning Efficient and Robust
Ordinary Differential Equations
via Invertible Neural Networks

Weiming Zhi?, Tin Lai!, Lionel Ott?, Edwin V. Bonilla3, Fabio Ramos'#
1School of Computer Science, the University of Sydney
2 Autonomous Systems Lab, ETH Zurich
3Datab1, CSIRO
4 NVIDIA

Introduction

e Motivations of our work

* Integrating long Neural ODE trajectories with numerical integrators can be slow and prone to
error

* There is no straightforward way to constrain the asymptotic stability of Neural ODEs

* We introduce an alternative approach to learning ODEs, by viewing the target ODE
to be connected to a "simpler" ODE. Intuitively, we can use an invertible mapping
to "morph" the simpler ODE into the desired target.

ODE Learning with Neural Network Dynamics

* Chenetal., 2018 introduced Neural ODEs, in which the adjoint method is used to
enable tractable training of dynamics that are parameterised by a neural
network. The integration is performed via a numerical integrator

y'(t) = f(y(t),1), y(0) = yo,
Parameterised by NN
le
y(t) =ye, + [£yt
to

=0ODESolve(f,,yt,,te — to)-

Solved with a m; integrator

l(w) = Loss({y7""}y, {y(t) ey

Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, David K. Duvenaud. Neural Ordinary Differential Equations. Advances in Neural Information Processing Systems. 2018.

ODE Learning as Related Vector Fields

* We view the target ODE as a vector field that is related to an alternative vector
field that is more amenable to integration. A coupling-based Invertible Neural
Network is used to learn the mapping between integrals of the two vector fields

T M . T N Algorithm 1 Efficient integration of learned ODEs
DP_‘I Input: FQ! .qcps yos tl JJJJ tcn.d
Output: y(t1),...,y(tena)
X 1% xo Fy ' (yo)
\ x(t;) + xo + j(f gp(x(t))dt, fori =1,...,end
I—,-_" The integral is easier to solve.
Amenableto M x > AN Challengingto ¥(t1):--,¥(tena) < Fo(x(ta), - - X(tena))
) < Batched pass through INN can be efficiently computed on
Integration J2 _h\ Integrate GPUs.
. . —1 —1
We parameterise F via an Y'(t) = Jry(Fy (y())ge (Fy (¥(1)))

Invertible Neural Network

F1 X DF y(t) = FB(FQ_l(YO) + f 9o (x(t))dt)
N—MZS3TM == TN 0

"Simpler " base ODEs

e Linear ODE as the base

* We can achieve speed-ups of over two orders of magnitude for reasonably length
trajectories, by using the matrix exponential method to solve the ODE

x(t) = Yy (I - xo)rk exp(Aet)
* We can also ensure that the learned ODE will be asymptotically stable, by constraining the
eigenvalues of the base ODE to be negative

 However, the speed-up comes at a cost of flexibility

* Neural Network dynamics as the base
* We can offload learning capacity to both the invertible mapping and base ODE, for added
flexibility

* The base ODE can often be smaller than if we directly parameterise the dynamics of the
target ODE with a neural network. Note that the invertible neural network can be queried in
parallel on a GPU, while a numerical integrator is largely sequential

Experimental Results

* When a linear base ODE is used, we can significantly speed up the integration of
trajectories for a wide range of tested problems

* When a neural network base ODE is used, we observe improvements in learning
difficult ODEs, while being even slightly faster

~——— Ground truth
Pred.
@® init. cond.

3133
Slololo

ool
BEEH

3D Lotka-Volterra Imitation S Imitation cube pick Imitation C Lorenz ROBER
MSE (D) MSE (G) Time (ms) MSE(G) Time (ms) MSE (G) Time (ms) MSE (G) Time (ms) MAE Time(ms) MAE Time(ms)
Qurs (Lin) 0.14£0.1 1.5£0.1 93x04 6.1x12 6.6£0.2 18.6£62 7.1£16 8.1x1.6 75%0.8 Ours 020 2309 0.01 15748
Euler 45+0.3 4.6+0.1 3856+ 144 103429 7247+83 149+ 14 7284+95 73+20 753.9+14 Euler 10.99 456+ 13 022 2016
Midpoint ~ 0.38£0.05 5.51+0.1 67044313 109433 581.6+13.3 129413 12672+13.6 69+22 1305.4+ 14.7 Midpoint 6.60 805+ 43 0.044 34011
RK4 035+£0.005 5.6+02 13161308 103+3.0 2501.7+189 159+09 2522.8+23.1 7.6+£27 12923+22.0 RK4 6.81 1761x206 0.041 660+18

DOPRIS 093+£0.05 5.19+0.5 264.7+17.0 10.842.8 12777+ 143 149409 5040+123 7.1+19 623.4+156 DOPRI5S 7.55 632+83 0.039 18947

Conclusion

We present an alternative approach to learning ODEs: instead of directly
parameterising the system dynamics by a neural network, we view the target ODE
as related to a simpler base ODE. We can integrate trajectories of the base ODE and
find the corresponding trajectories on the target ODE. We study both using a linear
base, and a neural network base -- this allows us to obtain significant speed-ups or
added flexibility.

