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(Min-Max) Adversarial Training: Existing Principled Solution

* Nearly all existing work adopted the Adversarial Training (AT)
framework [Madry et al. 2017], formulated as min-max optimization

Training over adversarially perturbed dataset
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Sample-wise ‘adversarial attack’ generation

Limitation 1 (formulation level):
Attack type restriction: Must be the opposite of training objective

Limitation 2 (computation level):

Each training step needs multiple gradient back-propagations for attack
generation



(Min-Max) Adversarial Training: Existing Principled Solution

* In our paper, we focus on the following question:

How to advance the algorithmic
foundation to scale up
Adversarial Training?

* Answer: Bi-level Optimization



Bi-Level Optimization (BLO) Enables General AT Formulation

« Standard min-max formulation for adversarial training:

min By r)~p [lglggeftr(ei X+, t)]
« BLO-oriented adversarial training (AT)

Upper-level optimization mein £:(08,8%(0))

Lower-level optimization ~ S-t. 6°(0) = argmin s <¢ a1k (0, 8)
« Attack objective 7, will be set different from training objective /..
« Why BLO? A possible framework of attack-agnostic robust training

A careful design of £, can scale up adversarial training
(Our focus) ,



Implicit Gradient --- The Tricky Part of BLO

* Presence of implicit gradient (IG): the ‘fingerprint’ of BLO

The upper-level gradient calculation:
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IG: 6*(0) is an implicit function of @

* BLO is hard to solve, while proper lower-level objective makes it tractable!



BLO w/ Lower-Level Linearization ’ﬁ
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« BLO-oriented adversarial training (AT)

minimizeg E,_p[£(0,6"(0))]
subjectto 6%(0) = argminge, £,k (6, 8)

 BLO with customized lower-level attack objective
» Linearization at z with quadratic regularization:
A
£20(8,8) =< V5o, £21(0,8),6 = 2> + (5 ) 16— 2113

» Benefit: Unique, computation-efficient, closed-form lower-level minimizer
6"(0) = Projc(z — (1/2) V5?1 (0, 2))

Lower-level linearization leads to one-step PGD attack




Fast BAT

« Fast Bi-level Adversarial Training (Fast BAT)
minimizeg E,_p[£++(0,6"(0))] 5
subjectto 8*(0) = argminge, < Vs £5(0,2),6 —z > + (E) 1|8 — z||3

« Fast BAT algorithm: Alternating optimization
*» Fix 0, obtain lower-level solution §*(0)
6°(0) = Projc(z — (1/2) Vsta(6, 2))
* Fix &, obtain upper-level model update by SGD

d?:.(0,8%(0)) > Non-trivial: Chain rule cannot be
0—0—qa

de applied since projection operation
‘ Y ’ is not smooth
dl.,(6,5%(0)) ds*(0)7

= Vol (0,6 (0)) + Vel (0,87(0))

do do

IG



Fast BAT

ds*(0)
de

» Derivation of implicit gradient (IG)
> Key idea: Extract implicit functions that involves IG from KKT

conditions of lower-level problem

» Why is KKT tractable? In robust training, the lower-level constraint
6 € C is linear

Theorem 1 [zhang et al, 20211: With Hessian-free assumption, Vgs¢,1.(60,6) = 0

dé*(0)"
6

= —(1/)\)V95fatk(9,5*)Hc, with Hc p— [1P1<5I<Q1el 1p1<5§<qded]

1,<s5<q is an indicator function, p; = max{—e, —x;},q; = {6,1 — x;}




Fast BAT

« Fast Bi-level Adversarial Training (Fast BAT)
minimizeg E,._p[£:(0, 8 (0))]
subjectto 6*(0) = argminge. < Vs £5:x(0,2),6 —z > + (%) |6 — z||3
« Fast BAT algorithm:
s Fix 08, obtain lower-level solution 6*(0)
6"(0) = Projc(z — (1/1) Vst 1k(0, 2)) (Single-step perturbation)

% Fix 8, obtain upper-level model update by SGD
d?(8,5°(6)) | |
0<0-a 46 (IG-involved model updating)

I
= Vole:(0,57(0)) +

dé*(0)" !

de.(0,6%(6)) Vel (0,57 (0))

de de
IG
* T
do”(0) - _(1/>\)V95€atk(0,5*)Hc‘J_ (Theorem 1)

ae




Fast BAT vs. Linearization Type

 Fast BAT with gradient sign-based linearization
minimizeg E,..p[£++(0, 6 (0))]
A
subjectto 6*(0) = argminge. < sign(Vgs £,1k(0,2)),6 —z > + <§> |6 — z||3

 Why gradient sign?

Theorem 2: With sign-based linearization, Fast BAT simplifies to alternating
optimization (without involving computation of implicit gradients)

Fast AT
0¢+(0,6%(9)) [Wong et al., 2020]

a0

Lower-level: 8*(8) = Proj-(z — (1/2) sign(Vsf4 (60, 2))) }

Upper-level: 8 <« 8 — «a( +0)

Fast BAT + gradient sign-based linearization => Fast AT
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Numerical Experiments of Fast BAT on CIFAR-10

Train-time and test-time perturbation strength

A

A

SA(%) | RAPGD(%)| SA(%)  RA-PGD(%)
nnges Method 1= =R7955) | (c = 8/255) | (e = 16/255) (e = 16/255)
FAST-AT | 73.15£6.10 | 41.03£299 | 43.86+431  22.08+027

pARN.So | FAST-AT-GA | 77404081 | 46162098 | 4228+669 228712
; PGD-2-AT | 83.53+0.17 | 46.172059 | 68.88+0.30  2237+0.41
FAST-BAT | 78914068 | 49.18+0.35 | 69.0140.19  24.55+0.06

FAST-AT | 84.39+0.46 | 45804057 | 49.39+217  21.99+0.41

WRN-16-8 FAST-AT-GA | 81.51+0.38 48.29+0.20 45.95+13.65 23.10+3.90
St PGD-2-AT | 85.52+0.14 | 4547+0.14 | 72.11+0.33  23.61+0.16
FAST-BAT | 81.66+0.54 | 49.93+0.36 | 68.12+047  25.63+0.44

- O 0

Fast BAT improves baselines in both SA and RA

Improvement becomes more significant when facing stronger attack (e = 16/255)
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Fast-BAT Does not Suffer from Catastrophic Overfitting
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Figure. Robustness of different methods against different training attack strengths.
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