Revisiting and Advancing Fast Adversarial Training through the Lens of Bi-level Optimization

Yihua Zhang^{1,*}, Guanhua Zhang^{2,*}, Prashant Khanduri³, Mingyi Hong³, Shiyu Chang², Sijia Liu^{1,4}

¹Michigan State University, ²UC Santa Barbara, ³University of Minnesota, ⁴MIT-IBM Watson Lab

PAPER

CODE

(Min-Max) Adversarial Training: Existing Principled Solution

Nearly all existing work adopted the Adversarial Training (AT) framework [Madry et al. 2017], formulated as min-max optimization

Training over adversarially perturbed dataset

minimize_{$$\boldsymbol{\theta}$$} $E_{(\boldsymbol{x},t)\sim D} \left[\max_{|\boldsymbol{\delta}|_{\infty} \leq \epsilon} \ell_{\mathrm{tr}}(\boldsymbol{\theta}; \boldsymbol{x} + \boldsymbol{\delta}, t) \right]$

Sample-wise 'adversarial attack' generation

Limitation 1 (formulation level):

Attack type restriction: Must be the opposite of training objective

Limitation 2 (computation level):

Each training step needs multiple gradient back-propagations for attack generation

(Min-Max) Adversarial Training: Existing Principled Solution

In our paper, we focus on the following question:

How to advance the **algorithmic foundation** to scale up
Adversarial Training?

Answer: Bi-level Optimization

Bi-Level Optimization (BLO) Enables General AT Formulation

Standard min-max formulation for adversarial training:

$$\min_{\theta} E_{(\boldsymbol{x},t)\sim D} \left[\max_{|\boldsymbol{\delta}|_{\infty} \leq \epsilon} \ell_{\mathrm{tr}}(\boldsymbol{\theta}; \boldsymbol{x} + \boldsymbol{\delta}, t) \right]$$

BLO-oriented adversarial training (AT)

```
Upper-level optimization \min_{\theta} \ell_{\mathrm{tr}}(\theta, \delta^*(\theta))
Lower-level optimization s. t. \delta^*(\theta) = \mathrm{argmin}_{|\delta|_{\infty} \le \epsilon} \ell_{\mathrm{atk}}(\theta, \delta)
```

- Attack objective ℓ_{atk} will be set different from training objective ℓ_{tr}
- Why BLO? A possible framework of attack-agnostic robust training

A careful design of ℓ_{atk} can scale up adversarial training (Our focus)

Implicit Gradient --- The Tricky Part of BLO

Presence of implicit gradient (IG): the 'fingerprint' of BLO

The upper-level gradient calculation:

$$\frac{\mathrm{d}\ell_{\mathrm{tr}}(\boldsymbol{\theta}, \boldsymbol{\delta}^*(\boldsymbol{\theta}))}{\mathrm{d}\boldsymbol{\theta}} = \frac{\partial\ell_{\mathrm{tr}}(\boldsymbol{\theta}, \boldsymbol{\delta}^*(\boldsymbol{\theta}))}{\partial\boldsymbol{\theta}} + \frac{\frac{\mathrm{d}\boldsymbol{\delta}^*(\boldsymbol{\theta})^T}{\mathrm{d}\boldsymbol{\theta}} \frac{\partial\ell_{\mathrm{tr}}(\boldsymbol{\theta}, \boldsymbol{\delta}^*(\boldsymbol{\theta}))}{\partial\boldsymbol{\delta}}}{\mathrm{IG}}$$

IG: $\delta^*(\theta)$ is an implicit function of θ

BLO is hard to solve, while proper lower-level objective makes it tractable!

BLO w/ Lower-Level Linearization

BLO-oriented adversarial training (AT)

minimize_{$$\boldsymbol{\theta}$$} $E_{x\sim D}[\ell_{\mathrm{tr}}(\boldsymbol{\theta}, \boldsymbol{\delta}^*(\boldsymbol{\theta}))]$
subject to $\boldsymbol{\delta}^*(\boldsymbol{\theta}) = \mathrm{argmin}_{\boldsymbol{\delta}\in C} \ \ell_{\mathrm{atk}}(\boldsymbol{\theta}, \boldsymbol{\delta})$

- BLO with customized lower-level attack objective
 - Linearization at z with quadratic regularization:

$$\ell_{\text{atk}}(\boldsymbol{\theta}, \boldsymbol{\delta}) = \langle \nabla_{\boldsymbol{\delta} = \boldsymbol{z}} \ell_{\text{atk}}(\boldsymbol{\theta}, \boldsymbol{\delta}), \boldsymbol{\delta} - \boldsymbol{z} \rangle + \left(\frac{\lambda}{2}\right) ||\boldsymbol{\delta} - \boldsymbol{z}||_2^2$$

> Benefit: Unique, computation-efficient, closed-form lower-level minimizer

$$\boldsymbol{\delta}^*(\boldsymbol{\theta}) = \operatorname{Proj}_{\mathcal{C}}(\boldsymbol{z} - (1/\lambda) \nabla_{\boldsymbol{\delta}} \ell_{\operatorname{atk}}(\boldsymbol{\theta}, \boldsymbol{z}))$$

Lower-level linearization leads to one-step PGD attack

Fast BAT

Fast Bi-level Adversarial Training (Fast BAT)

$$\begin{aligned} & \text{minimize}_{\boldsymbol{\theta}} \ \mathbf{E}_{\boldsymbol{x} \sim D}[\ell_{\text{tr}}(\boldsymbol{\theta}, \boldsymbol{\delta}^*(\boldsymbol{\theta}))] \\ & \text{subject to} \ \boldsymbol{\delta}^*(\boldsymbol{\theta}) = & \text{argmin}_{\boldsymbol{\delta} \in \mathcal{C}} < \nabla_{\boldsymbol{\delta}} \ \ell_{\text{atk}}(\boldsymbol{\theta}, \boldsymbol{z}), \boldsymbol{\delta} - \boldsymbol{z} > + \left(\frac{\lambda}{2}\right) ||\boldsymbol{\delta} - \boldsymbol{z}||_2^2 \end{aligned}$$

- Fast BAT algorithm: Alternating optimization
 - **\Leftrightarrow** Fix θ , obtain lower-level solution $\delta^*(\theta)$

$$\delta^*(\boldsymbol{\theta}) = \operatorname{Proj}_{\mathcal{C}}(\boldsymbol{z} - (1/\lambda) \nabla_{\delta} \ell_{\operatorname{atk}}(\boldsymbol{\theta}, \boldsymbol{z}))$$

 \bullet Fix δ , obtain upper-level model update by SGD

Fast BAT

- Derivation of implicit gradient (IG) $\frac{d\delta^*(\theta)}{d\theta}$
 - ➤ **Key idea:** Extract implicit functions that involves IG from KKT conditions of lower-level problem
 - ightharpoonup Why is KKT tractable? In robust training, the lower-level constraint $\delta \in C$ is linear

Theorem 1 [Zhang et al., 2021]: With Hessian-free assumption, $\nabla_{\delta\delta}\ell_{atk}(\theta,\delta)=0$

$$\frac{d\boldsymbol{\delta}^*(\boldsymbol{\theta})^{\top}}{d\boldsymbol{\theta}} = -(1/\lambda)\nabla_{\boldsymbol{\theta}\boldsymbol{\delta}}\ell_{\mathrm{atk}}(\boldsymbol{\theta},\boldsymbol{\delta}^*)\mathbf{H}_{\mathcal{C}}, \text{ with } \mathbf{H}_{\mathcal{C}} := \begin{bmatrix} 1_{p_1 < \delta_1^* < q_1}\mathbf{e}_1 & \cdots & 1_{p_1 < \delta_d^* < q_d}\mathbf{e}_d \end{bmatrix}$$

 $1_{p<\delta< q}$ is an indicator function, $p_i = \max\{-\epsilon, -x_i\}$, $q_i = \{\epsilon, 1 - x_i\}$

Fast BAT

Fast Bi-level Adversarial Training (Fast BAT)

$$\begin{aligned} & \text{minimize}_{\boldsymbol{\theta}} \ \mathbf{E}_{\boldsymbol{x} \sim D}[\ell_{\text{tr}}(\boldsymbol{\theta}, \boldsymbol{\delta}^*(\boldsymbol{\theta}))] \\ & \text{subject to } \boldsymbol{\delta}^*(\boldsymbol{\theta}) = \operatorname{argmin}_{\boldsymbol{\delta} \in \mathcal{C}} < \nabla_{\boldsymbol{\delta}} \ \ell_{\text{atk}}(\boldsymbol{\theta}, \boldsymbol{z}), \boldsymbol{\delta} - \boldsymbol{z} > + \left(\frac{\lambda}{2}\right) ||\boldsymbol{\delta} - \boldsymbol{z}||_2^2 \end{aligned}$$

- Fast BAT algorithm:
 - **\Display** Fix θ , obtain lower-level solution $\delta^*(\theta)$

$$\delta^*(\boldsymbol{\theta}) = \operatorname{Proj}_{\mathcal{C}}(\boldsymbol{z} - (1/\lambda) \nabla_{\delta} \ell_{\operatorname{atk}}(\boldsymbol{\theta}, \boldsymbol{z}))$$

(Single-step perturbation)

 \diamond Fix δ , obtain upper-level model update by SGD

$$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \alpha \frac{\mathrm{d}\ell_{\mathrm{tr}}(\boldsymbol{\theta}, \boldsymbol{\delta}^*(\boldsymbol{\theta}))}{\mathrm{d}\boldsymbol{\theta}}$$

(IG-involved model updating)

$$\frac{d\ell_{\mathrm{tr}}(\boldsymbol{\theta}, \boldsymbol{\delta}^{*}(\boldsymbol{\theta}))}{d\boldsymbol{\theta}} = \nabla_{\boldsymbol{\theta}}\ell_{\mathrm{tr}}(\boldsymbol{\theta}, \boldsymbol{\delta}^{*}(\boldsymbol{\theta})) + \underbrace{\frac{d\boldsymbol{\delta}^{*}(\boldsymbol{\theta})^{\top}}{d\boldsymbol{\theta}}} \nabla_{\boldsymbol{\delta}}\ell_{\mathrm{tr}}(\boldsymbol{\theta}, \boldsymbol{\delta}^{*}(\boldsymbol{\theta}))$$

$$\frac{d\boldsymbol{\delta}^{*}(\boldsymbol{\theta})^{\top}}{d\boldsymbol{\theta}} = -(1/\lambda)\nabla_{\boldsymbol{\theta}\boldsymbol{\delta}}\ell_{\mathrm{atk}}(\boldsymbol{\theta}, \boldsymbol{\delta}^{*})\mathbf{H}_{\mathcal{C}} \qquad \text{(Theorem 1)}$$

Fast BAT vs. Linearization Type

Fast BAT with gradient sign-based linearization

$$\begin{aligned} & \text{minimize}_{\boldsymbol{\theta}} \ \mathbf{E}_{\boldsymbol{x} \sim D}[\ell_{\text{tr}}(\boldsymbol{\theta}, \boldsymbol{\delta}^*(\boldsymbol{\theta}))] \\ & \text{subject to} \ \boldsymbol{\delta}^*(\boldsymbol{\theta}) = & \text{argmin}_{\boldsymbol{\delta} \in \mathcal{C}} < & \text{sign}(\nabla_{\boldsymbol{\delta}} \ \ell_{\text{atk}}(\boldsymbol{\theta}, \boldsymbol{z})), \boldsymbol{\delta} - \boldsymbol{z} > + \left(\frac{\lambda}{2}\right) ||\boldsymbol{\delta} - \boldsymbol{z}||_2^2 \end{aligned}$$

Why gradient sign?

Theorem 2: With sign-based linearization, Fast BAT simplifies to alternating optimization (without involving computation of implicit gradients)

Lower-level:
$$\delta^*(\boldsymbol{\theta}) = \operatorname{Proj}_{\mathcal{C}}(\mathbf{z} - (1/\lambda)\operatorname{sign}(\nabla_{\boldsymbol{\delta}}\ell_{\operatorname{atk}}(\boldsymbol{\theta}, \mathbf{z})))$$

Upper-level:
$$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \alpha \left(\frac{\partial \ell_{\text{tr}} (\boldsymbol{\theta}, \boldsymbol{\delta}^*(\boldsymbol{\theta}))}{\partial \boldsymbol{\theta}} + \mathbf{0} \right)$$

Fast AT [Wong et al., 2020]

Fast BAT + gradient sign-based linearization => Fast AT

Numerical Experiments of Fast BAT on CIFAR-10

Train-time and test-time perturbation strength

Model	Method	SA(%) ($\epsilon = 8/255$)	RA-PGD(%) $(\epsilon = 8/255)$	SA(%) ($\epsilon = 16/255$)	RA-PGD(%) $(\epsilon = 16/255)$
PARN-50	FAST-AT FAST-AT-GA PGD-2-AT	73.15±6.10 77.40±0.81 83.53 ±0.17	41.03±2.99 46.16±0.98 46.17±0.59	43.86±4.31 42.28±6.69 68.88±0.39	$\substack{22.08 \pm 0.27 \\ 22.87 \pm 1.25 \\ 22.37 \pm 0.41}$
WRN-16-8	FAST-BAT FAST-AT FAST-AT-GA PGD-2-AT	78.91±0.68 84.39±0.46 81.51±0.38 85.52±0.14	49.18±0.35 45.80±0.57 48.29±0.20 45.47±0.14	69.01±0.19 49.39±2.17 45.95±13.65 72.11±0.33	24.55±0.06 21.99±0.41 23.10±3.90 23.61±0.16
	FAST-BAT	81.66±0.54	49.93 ±0.36	68.12 ± 0.47	25.63±0.44

- Fast BAT improves baselines in both SA and RA
- Improvement becomes more significant when facing stronger attack ($\epsilon = 16/255$)

Fast-BAT Does not Suffer from Catastrophic Overfitting

Figure. Robustness of different methods against different training attack strengths.

