Revisiting and Advancing Fast Adversarial Training
through the Lens of Bi-level Optimization

Yihua Zhang'* ,Guanhua Zhang?*, Prashant Khanduri?,
Mingyi Hong?, Shiyu Chang?, Sijia Liu'#

"Michigan State University, 2UC Santa Barbara, University of Minnesota, “MIT-IBM Watson Lab

(Min-Max) Adversarial Training: Existing Principled Solution

* Nearly all existing work adopted the Adversarial Training (AT)
framework [Madry et al. 2017], formulated as min-max optimization

Training over adversarially perturbed dataset

A
o)

minimizeg E(, ¢)~p [I glaé(ftr (@;x + 6, t)]
—

_J

'
Sample-wise ‘adversarial attack’ generation

Limitation 1 (formulation level):
Attack type restriction: Must be the opposite of training objective

Limitation 2 (computation level):

Each training step needs multiple gradient back-propagations for attack
generation

(Min-Max) Adversarial Training: Existing Principled Solution

* In our paper, we focus on the following question:

How to advance the algorithmic
foundation to scale up
Adversarial Training?

* Answer: Bi-level Optimization

Bi-Level Optimization (BLO) Enables General AT Formulation

« Standard min-max formulation for adversarial training:

min By r)~p [lglggeftr(ei X+, t)]
« BLO-oriented adversarial training (AT)

Upper-level optimization mein £:(08,8%(0))

Lower-level optimization ~ S-t. 6°(0) = argmin s <¢ a1k (0, 8)
« Attack objective 7, will be set different from training objective /..
« Why BLO? A possible framework of attack-agnostic robust training

A careful design of £, can scale up adversarial training
(Our focus) ,

Implicit Gradient --- The Tricky Part of BLO

* Presence of implicit gradient (IG): the ‘fingerprint’ of BLO

The upper-level gradient calculation:

¢-@F@® _#H-@F@) dé*(6)" 0¢.+(6,8"(0))

dé 00 dé 06
—~—

IG

IG: 6*(0) is an implicit function of @

* BLO is hard to solve, while proper lower-level objective makes it tractable!

BLO w/ Lower-Level Linearization ’ﬁ

MICHIGAN STATE
UUUUUUUUUU

« BLO-oriented adversarial training (AT)

minimizeg E,_p[£(0,6"(0))]
subjectto 6%(0) = argminge, £,k (6, 8)

 BLO with customized lower-level attack objective
» Linearization at z with quadratic regularization:
A
£20(8,8) =< V5o, £21(0,8),6 = 2> + (5) 16— 2113

» Benefit: Unique, computation-efficient, closed-form lower-level minimizer
6"(0) = Projc(z — (1/2) V5?1 (0, 2))

Lower-level linearization leads to one-step PGD attack

Fast BAT

« Fast Bi-level Adversarial Training (Fast BAT)
minimizeg E,_p[£++(0,6"(0))] 5
subjectto 8*(0) = argminge, < Vs £5(0,2),6 —z > + (E) 1|8 — z||3

« Fast BAT algorithm: Alternating optimization
» Fix 0, obtain lower-level solution §(0)
6°(0) = Projc(z — (1/2) Vsta(6, 2))
* Fix &, obtain upper-level model update by SGD

d?:.(0,8%(0)) > Non-trivial: Chain rule cannot be
0—0—qa

de applied since projection operation
‘ Y ’ is not smooth
dl.,(6,5%(0)) ds*(0)7

= Vol (0,6 (0)) + Vel (0,87(0))

do do

IG

Fast BAT

ds*(0)
de

» Derivation of implicit gradient (IG)
> Key idea: Extract implicit functions that involves IG from KKT

conditions of lower-level problem

» Why is KKT tractable? In robust training, the lower-level constraint
6 € C is linear

Theorem 1 [zhang et al, 20211: With Hessian-free assumption, Vgs¢,1.(60,6) = 0

dé*(0)"
6

= —(1/)\)V95fatk(9,5*)Hc, with Hc p— [1P1<5I<Q1el 1p1<5§<qded]

1,<s5<q is an indicator function, p; = max{—e, —x;},q; = {6,1 — x;}

Fast BAT

« Fast Bi-level Adversarial Training (Fast BAT)
minimizeg E,._p[£:(0, 8 (0))]
subjectto 6*(0) = argminge. < Vs £5:x(0,2),6 —z > + (%) |6 — z||3
« Fast BAT algorithm:
s Fix 08, obtain lower-level solution 6*(0)
6"(0) = Projc(z — (1/1) Vst 1k(0, 2)) (Single-step perturbation)

% Fix 8, obtain upper-level model update by SGD
d?(8,5°(6)) | |
0<0-a 46 (IG-involved model updating)

I
= Vole:(0,57(0)) +

dé*(0)" !

de.(0,6%(6)) Vel (0,57 (0))

de de
IG
* T
do”(0) - _(1/>\)V95€atk(0,5*)Hc‘J_ (Theorem 1)

ae

Fast BAT vs. Linearization Type

 Fast BAT with gradient sign-based linearization
minimizeg E,..p[£++(0, 6 (0))]
A
subjectto 6*(0) = argminge. < sign(Vgs £,1k(0,2)),6 —z > + <§> |6 — z||3

 Why gradient sign?

Theorem 2: With sign-based linearization, Fast BAT simplifies to alternating
optimization (without involving computation of implicit gradients)

Fast AT
0¢+(0,6%(9)) [Wong et al., 2020]

a0

Lower-level: 8*(8) = Proj-(z — (1/2) sign(Vsf4 (60, 2))) }

Upper-level: 8 <« 8 — «a(+0)

Fast BAT + gradient sign-based linearization => Fast AT

10

Numerical Experiments of Fast BAT on CIFAR-10

Train-time and test-time perturbation strength

A

A

SA(%) | RAPGD(%)| SA(%) RA-PGD(%)
nnges Method 1= =R7955) | (c = 8/255) | (e = 16/255) (e = 16/255)
FAST-AT | 73.15£6.10 | 41.03£299 | 43.86+431 22.08+027

pARN.So | FAST-AT-GA | 77404081 | 46162098 | 4228+669 228712
; PGD-2-AT | 83.53+0.17 | 46.172059 | 68.88+0.30 2237+0.41
FAST-BAT | 78914068 | 49.18+0.35 | 69.0140.19 24.55+0.06

FAST-AT | 84.39+0.46 | 45804057 | 49.39+217 21.99+0.41

WRN-16-8 FAST-AT-GA | 81.51+0.38 48.29+0.20 45.95+13.65 23.10+3.90
St PGD-2-AT | 85.52+0.14 | 4547+0.14 | 72.11+0.33 23.61+0.16
FAST-BAT | 81.66+0.54 | 49.93+0.36 | 68.12+047 25.63+0.44

- O 0

Fast BAT improves baselines in both SA and RA

Improvement becomes more significant when facing stronger attack (e = 16/255)

11

Fast-BAT Does not Suffer from Catastrophic Overfitting

01 n —s— Fast-BAT

70 \ —a— Fast-AT-GA

€0 \ —s— PGD-2-AT
Fast-AT

(O]
o

W
o

Robust Accuracy (%)
N H
o o

=
o

o

2 4 6 8 10 12 14 16
Attack Strength (/255)

o

Figure. Robustness of different methods against different training attack strengths.

12

eAiSu

tusind tak s , ., .
18 dakujem vam o dZIQkUjQ ®

ggt ﬁumao mercl
TR

_‘Ynm

='U

(7))

baie dankie
grauas < ao—qqm molte grazie
obrlgada —

obrigado x
tesekkiir ederim rtaacnl gg

tack sa mycket

dan u
tasakkur edirs
mahalo

13

