Revisiting and Advancing Fast Adversarial Training through the Lens of Bi-level Optimization

Yihua Zhang^{1,*}, Guanhua Zhang^{2,*}, Prashant Khanduri³, Mingyi Hong³, Shiyu Chang², Sijia Liu^{1,4}

¹Michigan State University, ²UC Santa Barbara, ³University of Minnesota, ⁴MIT-IBM Watson Lab

Poster Session: Hall E #528, Wednesday (Tonight)

PAPER

CODE

(Min-Max) Adversarial Training: Existing Principled Solution

Nearly all existing work adopted the Adversarial Training (AT) framework [Madry et al. 2017], formulated as min-max optimization

Training over adversarially perturbed dataset

minimize_{$$\boldsymbol{\theta}$$} $E_{(\boldsymbol{x},t)\sim D}\left[\max_{|\boldsymbol{\delta}|_{\infty}\leq\epsilon}\ell_{\mathrm{tr}}(\boldsymbol{\theta};\boldsymbol{x}+\boldsymbol{\delta},t)\right]$

Sample-wise 'adversarial attack' generation

Assumption 1 (formulation level):

Attack type restriction: Must be the opposite of training objective.

Assumption 2 (computation level):

Each training step needs multiple gradient back-propagations to generate attacks.

(Min-Max) Adversarial Training: Existing Principled Solution

In our paper, we focus on the following question:

How to advance the **algorithmic foundation** to advance Adversarial Training?

- Answer: Bi-level Optimization
- A properly designed formulation and solver will help scale up AT!

Bi-Level Optimization (BLO) Enables General AT Formulation

Standard min-max formulation for adversarial training:

$$\min_{\theta} E_{(\boldsymbol{x},t)\sim D} \left[\max_{|\boldsymbol{\delta}|_{\infty} \leq \epsilon} \ell_{\mathrm{tr}}(\boldsymbol{\theta}; \boldsymbol{x} + \boldsymbol{\delta}, t) \right]$$

BLO-oriented adversarial training (AT)

```
Upper-level optimization \min_{\theta} \ell_{\mathrm{tr}}(\theta, \delta^*(\theta))
Lower-level optimization s. t. \delta^*(\theta) = \mathrm{argmin}_{|\delta|_{\infty} \le \epsilon} \ell_{\mathrm{atk}}(\theta, \delta)
```

- Decouple Attack objective \(\ell_{atk} \) from training objective \(\ell_{tr} \)
- Why BLO? A possible framework of attack-agnostic robust training

A careful design of ℓ_{atk} can scale up adversarial training

Implicit Gradient --- The Tricky Part of BLO

Presence of implicit gradient (IG): the 'fingerprint' of BLO

The upper-level gradient calculation:

$$\frac{\mathrm{d}\ell_{\mathrm{tr}}(\boldsymbol{\theta}, \boldsymbol{\delta}^*(\boldsymbol{\theta}))}{\mathrm{d}\boldsymbol{\theta}} = \frac{\partial\ell_{\mathrm{tr}}(\boldsymbol{\theta}, \boldsymbol{\delta}^*(\boldsymbol{\theta}))}{\partial\boldsymbol{\theta}} + \frac{\frac{\mathrm{d}\boldsymbol{\delta}^*(\boldsymbol{\theta})^T}{\mathrm{d}\boldsymbol{\theta}} \frac{\partial\ell_{\mathrm{tr}}(\boldsymbol{\theta}, \boldsymbol{\delta}^*(\boldsymbol{\theta}))}{\partial\boldsymbol{\delta}}}{\mathrm{IG}}$$

IG: Gradient flow from lower-level to upper-level. $\delta^*(\theta)$ is an implicit function of θ

- The lower-level constraint makes BLO even harder!
- Properly designed lower-level objective makes it tractable!

BLO w/ Lower-Level Linearization

BLO-oriented adversarial training (AT)

minimize_{$$\boldsymbol{\theta}$$} $E_{x\sim D}[\ell_{\mathrm{tr}}(\boldsymbol{\theta}, \boldsymbol{\delta}^*(\boldsymbol{\theta}))]$
subject to $\boldsymbol{\delta}^*(\boldsymbol{\theta}) = \mathrm{argmin}_{\boldsymbol{\delta}\in\mathcal{C}} \ \ell_{\mathrm{atk}}(\boldsymbol{\theta}, \boldsymbol{\delta})$

- BLO with customized lower-level attack objective
 - Linearization at z with quadratic regularization:

$$\ell_{\text{atk}}(\boldsymbol{\theta}, \boldsymbol{\delta}) = \langle \nabla_{\boldsymbol{\delta} = \boldsymbol{z}} \ell_{\text{atk}}(\boldsymbol{\theta}, \boldsymbol{\delta}), \boldsymbol{\delta} - \boldsymbol{z} \rangle + \left(\frac{\lambda}{2}\right) ||\boldsymbol{\delta} - \boldsymbol{z}||_2^2$$

> Benefit: Unique, computation-efficient, closed-form lower-level minimizer

$$\boldsymbol{\delta}^*(\boldsymbol{\theta}) = \operatorname{Proj}_{\mathcal{C}}(\boldsymbol{z} - (1/\lambda) \nabla_{\boldsymbol{\delta}} \ell_{\operatorname{atk}}(\boldsymbol{\theta}, \boldsymbol{z}))$$

Lower-level linearization leads to one-step PGD attack (No SIGN)!

Fast BAT

- Derivation of implicit gradient (IG) $\frac{d\delta^*(\theta)}{d\theta}$
 - ➤ **Key idea:** Extract implicit functions that involves IG from KKT conditions of lower-level problem
 - ightharpoonup Why is KKT tractable? In robust training, the lower-level constraint $\delta \in C$ is linear

Theorem 1 [Zhang et al., 2021]: With Hessian-free assumption, $\nabla_{\delta\delta}\ell_{atk}(\theta,\delta)=0$

$$\frac{d\boldsymbol{\delta}^*(\boldsymbol{\theta})^{\top}}{d\boldsymbol{\theta}} = -(1/\lambda)\nabla_{\boldsymbol{\theta}\boldsymbol{\delta}}\ell_{\mathrm{atk}}(\boldsymbol{\theta},\boldsymbol{\delta}^*)\mathbf{H}_{\mathcal{C}}, \text{ with } \mathbf{H}_{\mathcal{C}} := \begin{bmatrix} 1_{p_1 < \delta_1^* < q_1} \mathbf{e}_1 & \cdots & 1_{p_1 < \delta_d^* < q_d} \mathbf{e}_d \end{bmatrix}$$

 $1_{p<\delta < q}$ is an indicator function, $p_i = \max\{-\epsilon, -x_i\}$, $q_i = \{\epsilon, 1 - x_i\}$

Fast BAT

Fast Bi-level Adversarial Training (Fast BAT)

$$\begin{aligned} & \text{minimize}_{\boldsymbol{\theta}} \ \mathbf{E}_{\boldsymbol{x} \sim D}[\ell_{\text{tr}}(\boldsymbol{\theta}, \boldsymbol{\delta}^*(\boldsymbol{\theta}))] \\ & \text{subject to } \boldsymbol{\delta}^*(\boldsymbol{\theta}) = \operatorname{argmin}_{\boldsymbol{\delta} \in \mathcal{C}} < \nabla_{\boldsymbol{\delta}} \ \ell_{\text{atk}}(\boldsymbol{\theta}, \boldsymbol{z}), \boldsymbol{\delta} - \boldsymbol{z} > + \left(\frac{\lambda}{2}\right) ||\boldsymbol{\delta} - \boldsymbol{z}||_2^2 \end{aligned}$$

- Fast BAT algorithm:
 - \bullet Fix θ , obtain lower-level solution $\delta^*(\theta)$

$$\delta^*(\boldsymbol{\theta}) = \operatorname{Proj}_{\mathcal{C}}(\boldsymbol{z} - (1/\lambda) \nabla_{\delta} \ell_{\operatorname{atk}}(\boldsymbol{\theta}, \boldsymbol{z}))$$

(Single-step perturbation)

 \diamond Fix δ , obtain upper-level model update by SGD

$$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \alpha \frac{\mathrm{d}\ell_{\mathrm{tr}}(\boldsymbol{\theta}, \boldsymbol{\delta}^*(\boldsymbol{\theta}))}{\mathrm{d}\boldsymbol{\theta}}$$

(IG-involved model updating)

$$\frac{d\ell_{\mathrm{tr}}(\boldsymbol{\theta}, \boldsymbol{\delta}^{*}(\boldsymbol{\theta}))}{d\boldsymbol{\theta}} = \nabla_{\boldsymbol{\theta}}\ell_{\mathrm{tr}}(\boldsymbol{\theta}, \boldsymbol{\delta}^{*}(\boldsymbol{\theta})) + \underbrace{\frac{d\boldsymbol{\delta}^{*}(\boldsymbol{\theta})^{\top}}{d\boldsymbol{\theta}}}_{\mathrm{IG}} \nabla_{\boldsymbol{\delta}}\ell_{\mathrm{tr}}(\boldsymbol{\theta}, \boldsymbol{\delta}^{*}(\boldsymbol{\theta}))$$

$$\frac{d\boldsymbol{\delta}^{*}(\boldsymbol{\theta})^{\top}}{d\boldsymbol{\theta}} = -(1/\lambda)\nabla_{\boldsymbol{\theta}\boldsymbol{\delta}}\ell_{\mathrm{atk}}(\boldsymbol{\theta}, \boldsymbol{\delta}^{*})\mathbf{H}_{\mathcal{C}}$$
(Theorem 1)

Fast BAT vs. Linearization Type

Fast BAT with gradient sign-based linearization

$$\begin{aligned} & \text{minimize}_{\boldsymbol{\theta}} \ \mathbf{E}_{\boldsymbol{x} \sim D}[\ell_{\text{tr}}(\boldsymbol{\theta}, \boldsymbol{\delta}^*(\boldsymbol{\theta}))] \\ & \text{subject to} \ \boldsymbol{\delta}^*(\boldsymbol{\theta}) = & \text{argmin}_{\boldsymbol{\delta} \in \mathcal{C}} < & \text{sign}(\nabla_{\boldsymbol{\delta}} \ \ell_{\text{atk}}(\boldsymbol{\theta}, \boldsymbol{z})), \boldsymbol{\delta} - \boldsymbol{z} > + \left(\frac{\lambda}{2}\right) ||\boldsymbol{\delta} - \boldsymbol{z}||_2^2 \end{aligned}$$

Why gradient sign?

Theorem 2: With sign-based linearization, Fast BAT simplifies to alternating optimization (without involving computation of implicit gradients)

Lower-level:
$$\delta^*(\boldsymbol{\theta}) = \operatorname{Proj}_{\mathcal{C}}(\mathbf{z} - (1/\lambda)\operatorname{sign}(\nabla_{\boldsymbol{\delta}}\ell_{\operatorname{atk}}(\boldsymbol{\theta}, \mathbf{z})))$$

Upper-level:
$$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \alpha \left(\frac{\partial \ell_{\text{tr}} (\boldsymbol{\theta}, \boldsymbol{\delta}^*(\boldsymbol{\theta}))}{\partial \boldsymbol{\theta}} + \mathbf{0} \right)$$

Fast AT [Wong et al., 2020]

Fast BAT + gradient sign-based linearization => Fast AT

Numerical Experiments of Fast BAT on CIFAR-10

Metrics: Standard Accuracy, Robust Accuracy (PGD/AutoAttack) Baselines: Fast-AT, Fast-AT with Gradient Alignment, 2-step AT

CIFAR-10, PARN-18 trained with $\epsilon=8/255$					
Method	SA (%)	RA-PGD (%)		RA-AA (%)	
		$\epsilon = 8$	$\epsilon = 16$	$\epsilon = 8$	$\epsilon = 16$
FAST-AT	82.39 ±0.44	45.49 ± 0.41	9.56 ± 0.26	41.87 ± 0.15	7.91 ± 0.06
FAST-AT-GA	79.71±0.44	47.27 ± 0.42	11.57 ± 0.32	43.24 ± 0.27	9.48 ± 0.15
PGD-2-AT	81.97 ± 0.41	44.62 ± 0.39	9.39 ± 0.32	41.73 ± 0.20	7.54 ± 0.25
FAST-BAT	79.97 ± 0.12	48.83 ± 0.17	14.00 ± 0.21	45.19 ± 0.12	11.51 ± 0.20
CIFAR-10, PARN-18 trained with $\epsilon=16/255$					
FAST-AT	44.15±7.27	37.17 ± 0.74	21.83 ± 1.32	31.66 ± 0.27	12.49 ± 0.33
FAST-AT-GA	58.29 ± 1.32	43.86 ± 0.67	26.01 ± 0.16	38.69 ± 0.56	17.97 ± 0.33
PGD-2-AT	68.04 ± 0.30	48.79 ± 0.31	24.30 ± 0.46	41.59 ± 0.22	15.40 ± 0.29
FAST-BAT	68.16 ± 0.25	49.05 ± 0.12	27.69 ±0.16	43.64 ± 0.26	18.79 ±0.24

- Fast BAT improves baselines in both SA and RA, and mitigates catastrophic overfitting!
- Improvement becomes more significant when facing stronger attack ($\epsilon = 16/255$)

Poster Session: Hall E #528, Wednesday (Tonight)

