Revisiting and Advancing Fast Adversarial Training through the Lens of Bi-level Optimization Yihua Zhang^{1,*}, Guanhua Zhang^{2,*}, Prashant Khanduri³, Mingyi Hong³, Shiyu Chang², Sijia Liu^{1,4} ¹Michigan State University, ²UC Santa Barbara, ³University of Minnesota, ⁴MIT-IBM Watson Lab Poster Session: Hall E #528, Wednesday (Tonight) **PAPER** CODE #### (Min-Max) Adversarial Training: Existing Principled Solution Nearly all existing work adopted the Adversarial Training (AT) framework [Madry et al. 2017], formulated as min-max optimization Training over adversarially perturbed dataset minimize_{$$\boldsymbol{\theta}$$} $E_{(\boldsymbol{x},t)\sim D}\left[\max_{|\boldsymbol{\delta}|_{\infty}\leq\epsilon}\ell_{\mathrm{tr}}(\boldsymbol{\theta};\boldsymbol{x}+\boldsymbol{\delta},t)\right]$ Sample-wise 'adversarial attack' generation #### Assumption 1 (formulation level): Attack type restriction: Must be the opposite of training objective. #### Assumption 2 (computation level): Each training step needs multiple gradient back-propagations to generate attacks. ## (Min-Max) Adversarial Training: Existing Principled Solution In our paper, we focus on the following question: # How to advance the **algorithmic foundation** to advance Adversarial Training? - Answer: Bi-level Optimization - A properly designed formulation and solver will help scale up AT! # **Bi-Level Optimization (BLO) Enables General AT Formulation** Standard min-max formulation for adversarial training: $$\min_{\theta} E_{(\boldsymbol{x},t)\sim D} \left[\max_{|\boldsymbol{\delta}|_{\infty} \leq \epsilon} \ell_{\mathrm{tr}}(\boldsymbol{\theta}; \boldsymbol{x} + \boldsymbol{\delta}, t) \right]$$ BLO-oriented adversarial training (AT) ``` Upper-level optimization \min_{\theta} \ell_{\mathrm{tr}}(\theta, \delta^*(\theta)) Lower-level optimization s. t. \delta^*(\theta) = \mathrm{argmin}_{|\delta|_{\infty} \le \epsilon} \ell_{\mathrm{atk}}(\theta, \delta) ``` - Decouple Attack objective \(\ell_{atk} \) from training objective \(\ell_{tr} \) - Why BLO? A possible framework of attack-agnostic robust training A careful design of ℓ_{atk} can scale up adversarial training # Implicit Gradient --- The Tricky Part of BLO Presence of implicit gradient (IG): the 'fingerprint' of BLO The upper-level gradient calculation: $$\frac{\mathrm{d}\ell_{\mathrm{tr}}(\boldsymbol{\theta}, \boldsymbol{\delta}^*(\boldsymbol{\theta}))}{\mathrm{d}\boldsymbol{\theta}} = \frac{\partial\ell_{\mathrm{tr}}(\boldsymbol{\theta}, \boldsymbol{\delta}^*(\boldsymbol{\theta}))}{\partial\boldsymbol{\theta}} + \frac{\frac{\mathrm{d}\boldsymbol{\delta}^*(\boldsymbol{\theta})^T}{\mathrm{d}\boldsymbol{\theta}} \frac{\partial\ell_{\mathrm{tr}}(\boldsymbol{\theta}, \boldsymbol{\delta}^*(\boldsymbol{\theta}))}{\partial\boldsymbol{\delta}}}{\mathrm{IG}}$$ **IG**: Gradient flow from lower-level to upper-level. $\delta^*(\theta)$ is an implicit function of θ - The lower-level constraint makes BLO even harder! - Properly designed lower-level objective makes it tractable! #### **BLO w/ Lower-Level Linearization** ## BLO-oriented adversarial training (AT) minimize_{$$\boldsymbol{\theta}$$} $E_{x\sim D}[\ell_{\mathrm{tr}}(\boldsymbol{\theta}, \boldsymbol{\delta}^*(\boldsymbol{\theta}))]$ subject to $\boldsymbol{\delta}^*(\boldsymbol{\theta}) = \mathrm{argmin}_{\boldsymbol{\delta}\in\mathcal{C}} \ \ell_{\mathrm{atk}}(\boldsymbol{\theta}, \boldsymbol{\delta})$ - BLO with customized lower-level attack objective - Linearization at z with quadratic regularization: $$\ell_{\text{atk}}(\boldsymbol{\theta}, \boldsymbol{\delta}) = \langle \nabla_{\boldsymbol{\delta} = \boldsymbol{z}} \ell_{\text{atk}}(\boldsymbol{\theta}, \boldsymbol{\delta}), \boldsymbol{\delta} - \boldsymbol{z} \rangle + \left(\frac{\lambda}{2}\right) ||\boldsymbol{\delta} - \boldsymbol{z}||_2^2$$ > Benefit: Unique, computation-efficient, closed-form lower-level minimizer $$\boldsymbol{\delta}^*(\boldsymbol{\theta}) = \operatorname{Proj}_{\mathcal{C}}(\boldsymbol{z} - (1/\lambda) \nabla_{\boldsymbol{\delta}} \ell_{\operatorname{atk}}(\boldsymbol{\theta}, \boldsymbol{z}))$$ Lower-level linearization leads to one-step PGD attack (No SIGN)! #### **Fast BAT** - Derivation of implicit gradient (IG) $\frac{d\delta^*(\theta)}{d\theta}$ - ➤ **Key idea:** Extract implicit functions that involves IG from KKT conditions of lower-level problem - ightharpoonup Why is KKT tractable? In robust training, the lower-level constraint $\delta \in C$ is linear **Theorem 1** [Zhang et al., 2021]: With Hessian-free assumption, $\nabla_{\delta\delta}\ell_{atk}(\theta,\delta)=0$ $$\frac{d\boldsymbol{\delta}^*(\boldsymbol{\theta})^{\top}}{d\boldsymbol{\theta}} = -(1/\lambda)\nabla_{\boldsymbol{\theta}\boldsymbol{\delta}}\ell_{\mathrm{atk}}(\boldsymbol{\theta},\boldsymbol{\delta}^*)\mathbf{H}_{\mathcal{C}}, \text{ with } \mathbf{H}_{\mathcal{C}} := \begin{bmatrix} 1_{p_1 < \delta_1^* < q_1} \mathbf{e}_1 & \cdots & 1_{p_1 < \delta_d^* < q_d} \mathbf{e}_d \end{bmatrix}$$ $1_{p<\delta < q}$ is an indicator function, $p_i = \max\{-\epsilon, -x_i\}$, $q_i = \{\epsilon, 1 - x_i\}$ #### **Fast BAT** Fast Bi-level Adversarial Training (Fast BAT) $$\begin{aligned} & \text{minimize}_{\boldsymbol{\theta}} \ \mathbf{E}_{\boldsymbol{x} \sim D}[\ell_{\text{tr}}(\boldsymbol{\theta}, \boldsymbol{\delta}^*(\boldsymbol{\theta}))] \\ & \text{subject to } \boldsymbol{\delta}^*(\boldsymbol{\theta}) = \operatorname{argmin}_{\boldsymbol{\delta} \in \mathcal{C}} < \nabla_{\boldsymbol{\delta}} \ \ell_{\text{atk}}(\boldsymbol{\theta}, \boldsymbol{z}), \boldsymbol{\delta} - \boldsymbol{z} > + \left(\frac{\lambda}{2}\right) ||\boldsymbol{\delta} - \boldsymbol{z}||_2^2 \end{aligned}$$ - Fast BAT algorithm: - \bullet Fix θ , obtain lower-level solution $\delta^*(\theta)$ $$\delta^*(\boldsymbol{\theta}) = \operatorname{Proj}_{\mathcal{C}}(\boldsymbol{z} - (1/\lambda) \nabla_{\delta} \ell_{\operatorname{atk}}(\boldsymbol{\theta}, \boldsymbol{z}))$$ (Single-step perturbation) \diamond Fix δ , obtain upper-level model update by SGD $$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \alpha \frac{\mathrm{d}\ell_{\mathrm{tr}}(\boldsymbol{\theta}, \boldsymbol{\delta}^*(\boldsymbol{\theta}))}{\mathrm{d}\boldsymbol{\theta}}$$ (IG-involved model updating) $$\frac{d\ell_{\mathrm{tr}}(\boldsymbol{\theta}, \boldsymbol{\delta}^{*}(\boldsymbol{\theta}))}{d\boldsymbol{\theta}} = \nabla_{\boldsymbol{\theta}}\ell_{\mathrm{tr}}(\boldsymbol{\theta}, \boldsymbol{\delta}^{*}(\boldsymbol{\theta})) + \underbrace{\frac{d\boldsymbol{\delta}^{*}(\boldsymbol{\theta})^{\top}}{d\boldsymbol{\theta}}}_{\mathrm{IG}} \nabla_{\boldsymbol{\delta}}\ell_{\mathrm{tr}}(\boldsymbol{\theta}, \boldsymbol{\delta}^{*}(\boldsymbol{\theta}))$$ $$\frac{d\boldsymbol{\delta}^{*}(\boldsymbol{\theta})^{\top}}{d\boldsymbol{\theta}} = -(1/\lambda)\nabla_{\boldsymbol{\theta}\boldsymbol{\delta}}\ell_{\mathrm{atk}}(\boldsymbol{\theta}, \boldsymbol{\delta}^{*})\mathbf{H}_{\mathcal{C}}$$ (Theorem 1) #### **Fast BAT vs. Linearization Type** #### Fast BAT with gradient sign-based linearization $$\begin{aligned} & \text{minimize}_{\boldsymbol{\theta}} \ \mathbf{E}_{\boldsymbol{x} \sim D}[\ell_{\text{tr}}(\boldsymbol{\theta}, \boldsymbol{\delta}^*(\boldsymbol{\theta}))] \\ & \text{subject to} \ \boldsymbol{\delta}^*(\boldsymbol{\theta}) = & \text{argmin}_{\boldsymbol{\delta} \in \mathcal{C}} < & \text{sign}(\nabla_{\boldsymbol{\delta}} \ \ell_{\text{atk}}(\boldsymbol{\theta}, \boldsymbol{z})), \boldsymbol{\delta} - \boldsymbol{z} > + \left(\frac{\lambda}{2}\right) ||\boldsymbol{\delta} - \boldsymbol{z}||_2^2 \end{aligned}$$ #### Why gradient sign? **Theorem 2**: With sign-based linearization, Fast BAT simplifies to alternating optimization (without involving computation of implicit gradients) Lower-level: $$\delta^*(\boldsymbol{\theta}) = \operatorname{Proj}_{\mathcal{C}}(\mathbf{z} - (1/\lambda)\operatorname{sign}(\nabla_{\boldsymbol{\delta}}\ell_{\operatorname{atk}}(\boldsymbol{\theta}, \mathbf{z})))$$ Upper-level: $$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \alpha \left(\frac{\partial \ell_{\text{tr}} (\boldsymbol{\theta}, \boldsymbol{\delta}^*(\boldsymbol{\theta}))}{\partial \boldsymbol{\theta}} + \mathbf{0} \right)$$ Fast AT [Wong et al., 2020] Fast BAT + gradient sign-based linearization => Fast AT #### **Numerical Experiments of Fast BAT on CIFAR-10** Metrics: Standard Accuracy, Robust Accuracy (PGD/AutoAttack) Baselines: Fast-AT, Fast-AT with Gradient Alignment, 2-step AT | CIFAR-10, PARN-18 trained with $\epsilon=8/255$ | | | | | | |--|-------------------------|-------------------------|--------------------|-------------------------|--------------------| | Method | SA (%) | RA-PGD (%) | | RA-AA (%) | | | | | $\epsilon = 8$ | $\epsilon = 16$ | $\epsilon = 8$ | $\epsilon = 16$ | | FAST-AT | 82.39 ±0.44 | 45.49 ± 0.41 | 9.56 ± 0.26 | 41.87 ± 0.15 | 7.91 ± 0.06 | | FAST-AT-GA | 79.71±0.44 | 47.27 ± 0.42 | 11.57 ± 0.32 | 43.24 ± 0.27 | 9.48 ± 0.15 | | PGD-2-AT | 81.97 ± 0.41 | 44.62 ± 0.39 | 9.39 ± 0.32 | 41.73 ± 0.20 | 7.54 ± 0.25 | | FAST-BAT | 79.97 ± 0.12 | 48.83 ± 0.17 | 14.00 ± 0.21 | 45.19 ± 0.12 | 11.51 ± 0.20 | | CIFAR-10, PARN-18 trained with $\epsilon=16/255$ | | | | | | | FAST-AT | 44.15±7.27 | 37.17 ± 0.74 | 21.83 ± 1.32 | 31.66 ± 0.27 | 12.49 ± 0.33 | | FAST-AT-GA | 58.29 ± 1.32 | 43.86 ± 0.67 | 26.01 ± 0.16 | 38.69 ± 0.56 | 17.97 ± 0.33 | | PGD-2-AT | 68.04 ± 0.30 | 48.79 ± 0.31 | 24.30 ± 0.46 | 41.59 ± 0.22 | 15.40 ± 0.29 | | FAST-BAT | 68.16 ± 0.25 | 49.05 ± 0.12 | 27.69 ±0.16 | 43.64 ± 0.26 | 18.79 ±0.24 | - Fast BAT improves baselines in both SA and RA, and mitigates catastrophic overfitting! - Improvement becomes more significant when facing stronger attack ($\epsilon = 16/255$) # Poster Session: Hall E #528, Wednesday (Tonight)