On the Surrogate Gap Between Contrastive and Supervised Losses

Han Bao

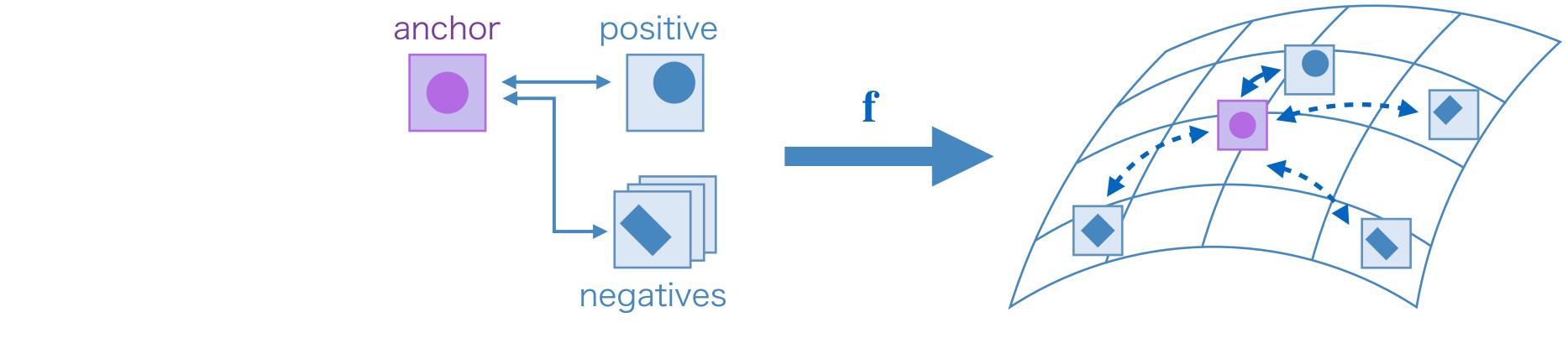
(Authors are listed in alphabetical order)

Kento Nozawa

Contrastive learning | Successful representation learning

• Learn a representation function f by making closer to positive/farther from negatives

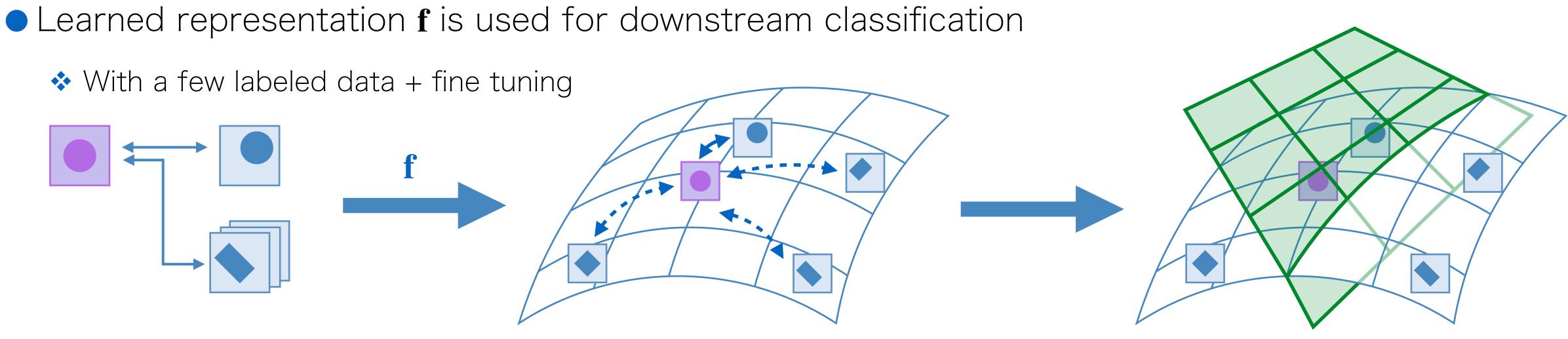
Without labeled data



• Objective function: contrastive loss

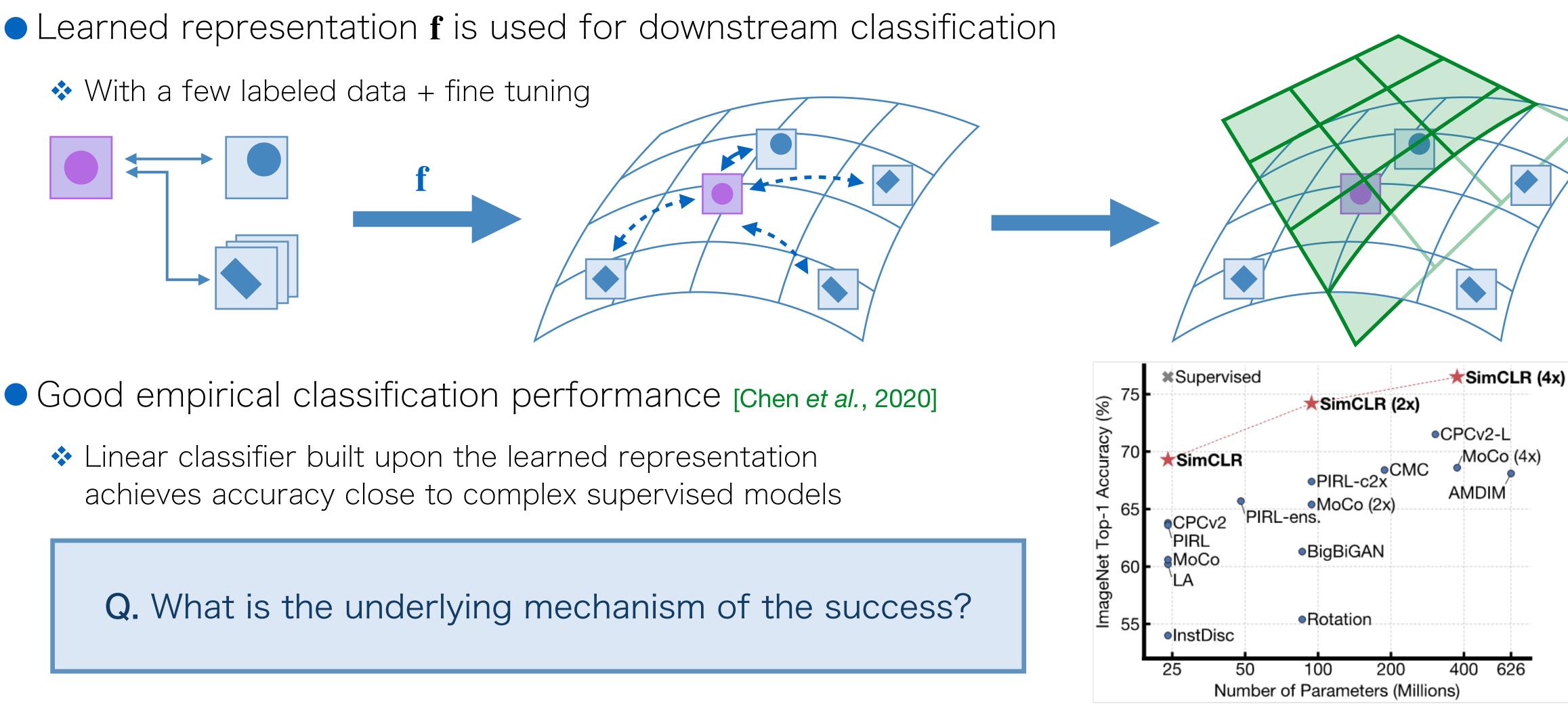
$$R_{\text{cont}}(\mathbf{f}) = \mathbb{E}\left[-\ln \frac{\exp\left(\mathbf{f}(\mathbf{x})^{\top}\mathbf{f}(\mathbf{x}^{+})\right)}{\exp\left(\mathbf{f}(\mathbf{x})^{\top}\mathbf{f}(\mathbf{x}^{+})\right) + \sum_{k \in [K]} \exp\left(\mathbf{f}(\mathbf{x})^{\top}\mathbf{f}(\mathbf{x}_{\overline{k}})\right)}\right]$$

Contrastive learning | Successful representation learning



Chen et al. "<u>A simple framework for contrastive learning of visual representations</u>" (ICML2020)

Contrastive learning | Successful representation learning



Chen et al. "<u>A simple framework for contrastive learning of visual representations</u>" (ICML2020)

Existing theoretical analysis of contrastive learning

• Class set $\mathcal{Y} = \{1, 2, ..., C\}$, the number of negative samples K

Data generating process

- ♦ Draw positive/negative classes c^+ , $\{c_k^-\}_{k \in [K]} \sim \mathbb{P}(Y)$
- Draw an anchor/positive sample $\mathbf{x}, \mathbf{x}^+ \sim \mathbb{P}(X | Y = c^+)$
- \diamond Draw K negative samples $\mathbf{x}_k^- \sim \mathbb{P}(X | Y = c_k^-)$

[Arora et al., 2019]



Existing theoretical analysis of contrastive learning

• Class set $\mathcal{Y} = \{1, 2, ..., C\}$, the number of negative samples K

Data generating process

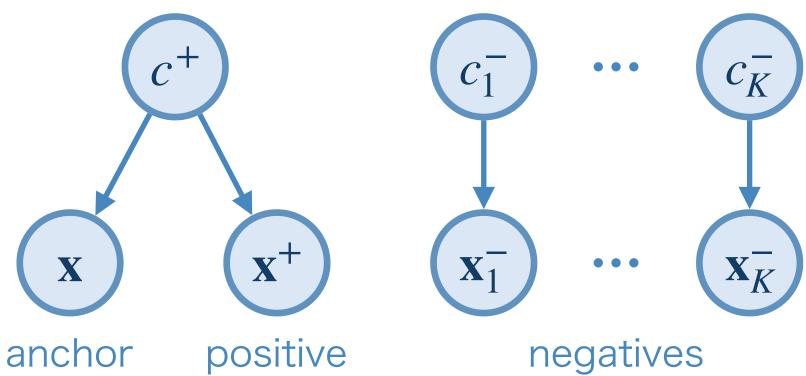
- ♦ Draw positive/negative classes c^+ , $\{c_k^-\}_{k \in [K]} \sim \mathbb{P}(Y)$
- Draw an anchor/positive sample $\mathbf{x}, \mathbf{x}^+ \sim \mathbb{P}(X | Y = c^+)$
- \diamond Draw K negative samples $\mathbf{x}_k^- \sim \mathbb{P}(X | Y = c_k^-)$
- Result: contrastive loss $R_{cont}(\mathbf{f})$ upper bounds downstream linear classification loss $R_{u-supv}(\mathbf{f})$

$$R_{\mu-\text{supv}}(\mathbf{f}) \leq \frac{1}{(1-\tau_K)v_{K+1}} \left\{ R_{\text{cont}}(\mathbf{f}) - \mathbb{E}\log(\text{Col}+1) \right\}$$

: collision probability of positive class with negative classes au_K : coverage probability that negative classes contain every class v_{K+1}

Arora et al. "A Theoretical Analysis of Contrastive Unsupervised Representation Learning." (ICML2019)

[Arora et al., 2019]



Issue | Disagreement of theory and practice!

• Theory [Arora et al., 2019]: larger K degrades downstream classification

$$R_{\mu-\text{supv}}(\mathbf{f}) \leq \frac{1}{(1-\tau_K)v_{K+1}} \Big\{ R_{\text{cont}}(\mathbf{f}) - \mathbb{E}\log(C) - \mathcal{E}\log(C) \Big\}$$

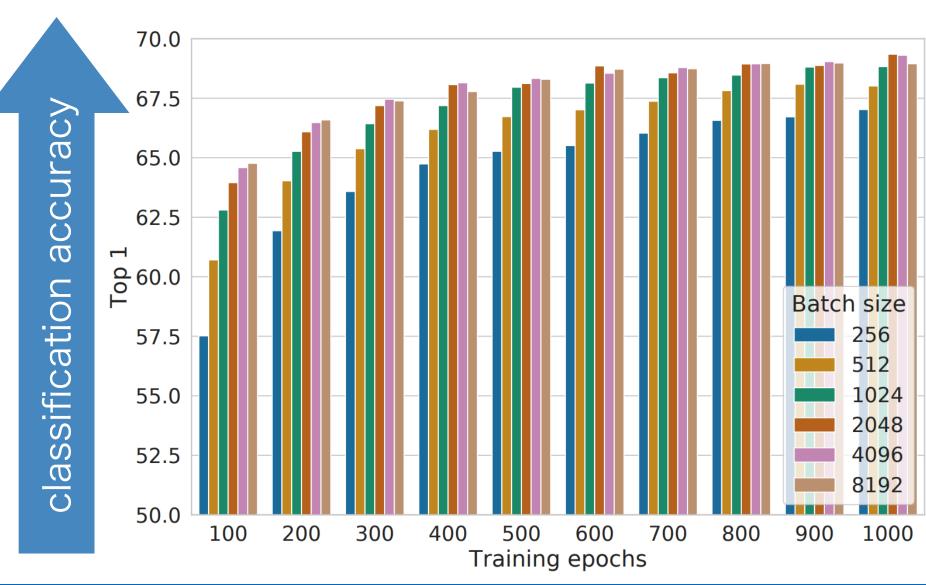
 \clubsuit Upper bound becomes exponentially loose in K

• Practice [Chen et al., 2020]: larger K improves downstream classification

 \clubsuit Classification accuracy improves as K (= batch size) increases

Chen et al. "<u>A simple framework for contrastive learning of visual representations</u>" (ICML2020) Arora et al. "<u>A Theoretical Analysis of Contrastive Unsupervised Representation Learning</u>" (ICML2019)

 $\operatorname{Col}+1)\Big\}$



Existing bound

$R_{\mu-\text{supv}}(\mathbf{f}) \le O(e^K) \{R_{\text{cont}}(\mathbf{f}) - \mathbb{E}\log(\text{Col}+1)\}$

Existing bound

Our upper bound

 $R_{\mu-\text{supv}}(\mathbf{f}) \le O(e^K) \{R_{\text{cont}}(\mathbf{f}) - \mathbb{E}\log(\text{Col}+1)\}$

 $R_{\mu-\text{supv}}(\mathbf{f}) \le R_{\text{cont}}(\mathbf{f}) + O\left(\ln\frac{1}{K}\right)$

Existing bound

• Our upper bound $R_{\mu-\text{supv}}(\mathbf{f}) \leq R_{\text{cont}}(\mathbf{f})$

Our lower bound

 $R_{\mu-\text{supv}}(\mathbf{f}) \ge R_{\text{cont}}(\mathbf{f})$

♦ Proof sketch: linearize log-sum-exp function of both R_{cont} and $R_{\mu-supv}$

 $R_{\mu-\text{supv}}(\mathbf{f}) \leq O(e^{K}) \{R_{\text{cont}}(\mathbf{f}) - \mathbb{E}\log(\text{Col}+1)\}$

$$+ O\left(\ln\frac{1}{K}\right)$$
$$+ O\left(\ln\frac{1}{K}\right)$$

Existing bound

 $R_{\mu-\mathrm{supv}}(\mathbf{f}) \leq$

• Our upper bound $R_{\mu-\text{supv}}(\mathbf{f}) \leq R_{\text{cont}}(\mathbf{f})$

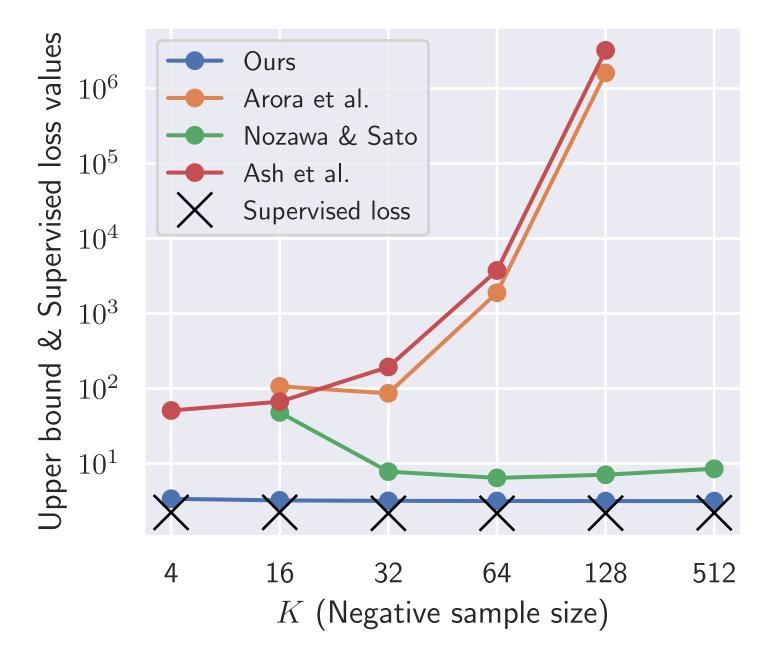
Our lower bound

 $R_{\mu-\text{supv}}(\mathbf{f}) \ge R_{\text{cont}}(\mathbf{f})$

♦ Proof sketch: linearize log-sum-exp function of both R_{cont} and $R_{\mu-supv}$

 $O(e^{K}) \quad \left\{ R_{\text{cont}}(\mathbf{f}) - \mathbb{E}\log(\text{Col} + 1) \right\}$

$$+ O\left(\ln\frac{1}{K}\right)$$
$$+ O\left(\ln\frac{1}{K}\right)$$



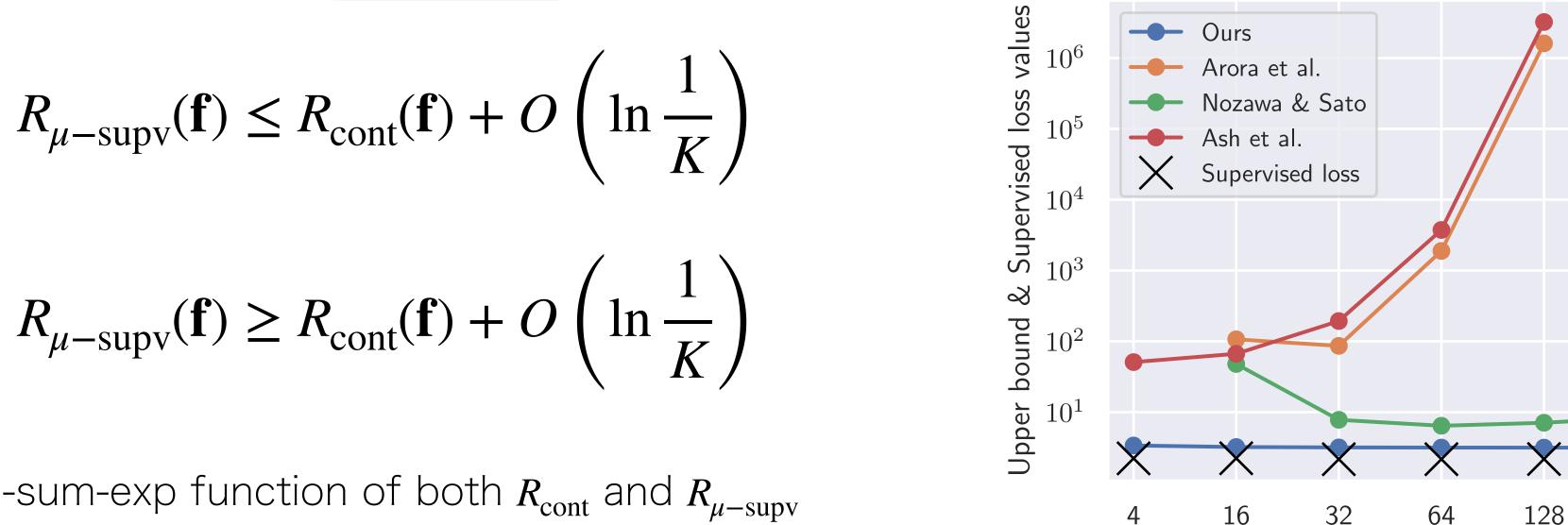
Existing bound

Our upper bound

Our lower bound

♦ Proof sketch: linearize log-sum-exp function of both R_{cont} and $R_{\mu-supv}$

 $R_{\mu-\text{supv}}(\mathbf{f}) \leq O(e^{K}) \{R_{\text{cont}}(\mathbf{f}) - \mathbb{E}\log(\text{Col}+1)\}$



K (Negative sample size)

Message: our bounds suggest that larger K is indeed good even in theory!

