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Contrastive learning | Successful representation learning
● Learn a representation function  by making closer to positive/farther from negatives 

❖ Without labeled data 

● Objective function: contrastive loss
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Rcont(f) = 𝔼[ − ln
exp (f(x)⊤f(x+))

exp (f(x)⊤f(x+)) + ∑k∈[K] exp (f(x)⊤f(x−
k )) ]



Contrastive learning | Successful representation learning
● Learned representation  is used for downstream classification 

❖ With a few labeled data + fine tuning
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●Good empirical classification performance [Chen et al., 2020] 
❖ Linear classifier built upon the learned representation 
achieves accuracy close to complex supervised models

Q. What is the underlying mechanism of the success?
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Existing theoretical analysis of contrastive learning
●Class set , the number of negative samples  

● Data generating process 
❖ Draw positive/negative classes  

❖ Draw an anchor/positive sample  

❖ Draw  negative samples 

𝒴 = {1,2,…, C} K

c+, {c−
k }k∈[K] ∼ ℙ(Y )

x, x+ ∼ ℙ(X |Y = c+)

K x−
k ∼ ℙ(X |Y = c−

k )
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Arora et al. “A Theoretical Analysis of Contrastive Unsupervised Representation Learning ” (ICML2019)
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● Result: contrastive loss  upper bounds downstream linear classification loss Rcont(f) Rμ−supv(f)

Rμ−supv(f) ≤
1

(1 − τK)vK+1
{Rcont(f) − 𝔼 log(Col + 1)}

●  : collision probability of positive class with negative classes 

●  : coverage probability that negative classes contain every class
τK

vK+1

http://proceedings.mlr.press/v97/saunshi19a/saunshi19a.pdf


Issue | Disagreement of theory and practice!
● Theory [Arora et al., 2019]: larger  degrades downstream classification 

❖ Upper bound becomes exponentially loose in  

● Practice [Chen et al., 2020]: larger  improves downstream classification 
❖ Classification accuracy improves as  (= batch size) increases
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Rμ−supv(f) ≤
1

(1 − τK)vK+1
{Rcont(f) − 𝔼 log(Col + 1)}

O(eK)
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Our result: much better upper & lower bounds
● Existing bound
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Message: our bounds suggest that larger  is indeed good even in theory!K


