A Rigorous Study of Integrated Gradients Method with Extensions to Internal Neuron Attributions

International Conference on Machine Learning, 2022

• Identify problems with uniqueness claims in [Sundararajan 2017], [Xu et al, 2020], [Sundararajan & Naomi, 2020]

- Identify problems with uniqueness claims in [Sundararajan 2017], [Xu et al, 2020], [Sundararajan & Naomi, 2020]
 - Rigorously establish the claims with an additional axiom: nondecreasing positivity.

- Identify problems with uniqueness claims in [Sundararajan 2017], [Xu et al, 2020], [Sundararajan & Naomi, 2020]
 - Rigorously establish the claims with an additional axiom: nondecreasing positivity.
- Study when IG is or may fail to be Lipschitz continuous.

- Identify problems with uniqueness claims in [Sundararajan 2017], [Xu et al, 2020], [Sundararajan & Naomi, 2020]
 - Rigorously establish the claims with an additional axiom: nondecreasing positivity.
- Study when IG is or may fail to be Lipschitz continuous.
- Introduce axioms when IG has a distribution of baselines.

- Identify problems with uniqueness claims in [Sundararajan 2017], [Xu et al, 2020], [Sundararajan & Naomi, 2020]
 - Rigorously establish the claims with an additional axiom: nondecreasing positivity.
- Study when IG is or may fail to be Lipschitz continuous.
- Introduce axioms when IG has a distribution of baselines.
- Introduce region-targeting attribution method for internal neurons.

Fireboat & IG

Fireboat & IG

Fireboat & IG

Fireboat & IG

Fireboat & IG

Fireboat & IG

Fireboat & IG

$$IG(x, x', F) = \left(\int \frac{dF}{dr_1} \frac{dr_1}{dt} dt, \dots, \int \frac{dF}{dr_n} \frac{dr_n}{dt} dt\right)$$

• Sensitivity(a): If a change in one pixel causes a change in output, that pixel should have a non-zero attribution.

- Sensitivity(a): If a change in one pixel causes a change in output, that pixel should have a non-zero attribution.
 - DeConv Nets [Zeiler & Fergus, 2014] and Guided Backprop [Springenberg et al., 2014] fail to satisfy.

- Sensitivity(a): If a change in one pixel causes a change in output, that pixel should have a non-zero attribution.
 - DeConv Nets [Zeiler & Fergus, 2014] and Guided Backprop [Springenberg et al., 2014] fail to satisfy.
- Implementation Invariance: If two models are mathematically equivalent, they should receive equivalent attributions.

- Sensitivity(a): If a change in one pixel causes a change in output, that pixel should have a non-zero attribution.
 - DeConv Nets [Zeiler & Fergus, 2014] and Guided Backprop [Springenberg et al., 2014] fail to satisfy.
- Implementation Invariance: If two models are mathematically equivalent, they should receive equivalent attributions.
 - Deeplift [Shrikumar er al, 2017] and LRP [Binder et al., 2016] fail to satisfy.

- Sensitivity(a): If a change in one pixel causes a change in output, that pixel should have a non-zero attribution.
 - DeConv Nets [Zeiler & Fergus, 2014] and Guided Backprop [Springenberg et al., 2014] fail to satisfy.
- Implementation Invariance: If two models are mathematically equivalent, they should receive equivalent attributions.
 - Deeplift [Shrikumar er al, 2017] and LRP [Binder et al., 2016] fail to satisfy.
- IG satisfies these axioms, and claims to uniquely satisfy a group axioms.

• IG Uniqueness Strategy: Import results from game-theory (Aumann-Shaply)

- IG Uniqueness Strategy: Import results from game-theory (Aumann-Shaply)
- E.g., A(x, x', F) game-theoretic attribution on model F, for input x, baseline x':

- IG Uniqueness Strategy: Import results from game-theory (Aumann-Shaply)
- E.g., A(x, x', F) game-theoretic attribution on model F, for input x, baseline x':
 - Dummy: If $\partial_i F \equiv 0$, then $A_i(x, x', F) = 0$

- IG Uniqueness Strategy: Import results from game-theory (Aumann-Shaply)
- E.g., A(x, x', F) game-theoretic attribution on model F, for input x, baseline x':
 - Dummy: If $\partial_i F \equiv 0$, then $A_i(x, x', F) = 0$
 - Linearity: A(x, x', F + G) = A(x, x', F) + A(x, x', G)

- IG Uniqueness Strategy: Import results from game-theory (Aumann-Shaply)
- E.g., A(x, x', F) game-theoretic attribution on model F, for input x, baseline x':
 - Dummy: If $\partial_i F \equiv 0$, then $A_i(x, x', F) = 0$
 - Linearity: A(x, x', F + G) = A(x, x', F) + A(x, x', G)
 - Completeness: $\sum_{i=1}^{n} A_i(x, x', F) = F(x) F(x')$

- IG Uniqueness Strategy: Import results from game-theory (Aumann-Shaply)
- E.g., A(x, x', F) game-theoretic attribution on model F, for input x, baseline x':
 - Dummy: If $\partial_i F \equiv 0$, then $A_i(x, x', F) = 0$
 - Linearity: A(x, x', F + G) = A(x, x', F) + A(x, x', G)
 - Completeness: $\sum_{i=1}^{n} A_i(x, x', F) = F(x) F(x')$

A is an accumulation of gradients for some monotone path integral.

$$A(x, x', F) = \left(\int_0^1 \frac{dF}{dr_1} \frac{dr_1}{dt} dt, \dots, \int_0^1 \frac{dF}{dr_n} \frac{dr_n}{dt} dt\right)$$

- IG Uniqueness Strategy: Import results from game-theory (Aumann-Shaply)
- E.g., A(x, x', F) game-theoretic attribution on model F, for input x, baseline x':
 - Dummy: If $\partial_i F \equiv 0$, then $A_i(x, x', F) = 0$
 - Linearity: A(x, x', F + G) = A(x, x', F) + A(x, x', G)
 - Completeness: $\sum_{i=1}^{n} A_i(x, x', F) = F(x) F(x')$
- IG claim the deep learning analogue holds also.

 \boldsymbol{A} is an accumulation of gradients for some monotone path integral.

$$A(x, x', F) = \left(\int_0^1 \frac{dF}{dr_1} \frac{dr_1}{dt} dt, \dots, \int_0^1 \frac{dF}{dr_n} \frac{dr_n}{dt} dt\right)$$

Classical Game Theory vs DL Context

Property	Classical Game Theory [Friedman, 2004]	Object Classification
Attribute Restrictions	$A \geq 0$	$A \in \mathbb{R}^n$
Monotonic Model?	Yes	No
Model Smoothness	$F \in C^1$	$F \in C^0$
Baseline	x' = 0	$x' \in [0,1]^n$

Classical Game Theory vs DL Context

Property	Classical Game Theory [Friedman, 2004]	Object Classification
Attribute Restrictions	$A \geq 0$	$A \in \mathbb{R}^n$
Monotonic Model?	Yes	No
Model Smoothness	$F \in C^1$	$F \in C^0$
Baseline	x' = 0	$x' \in [0,1]^n$

• The IG uniqueness claim does not hold.

Classical Game Theory vs DL Context

Property	Classical Game Theory [Friedman, 2004]	Object Classification
Attribute Restrictions	$A \geq 0$	$A \in \mathbb{R}^n$
Monotonic Model?	Yes	No
Model Smoothness	$F \in C^1$	$F \in C^0$
Baseline	x' = 0	$x' \in [0,1]^n$

- The IG uniqueness claim does not hold.
- We establish uniqueness claims with an additional axiom.

• IG - Which inputs contributed to an output?

- IG Which inputs contributed to an output?
- Neuron IG Which neurons contributed to an output? [Dhamdhere et al., 2018]

- IG Which inputs contributed to an output?
- Neuron IG Which neurons contributed to an output? [Dhamdhere et al., 2018]

Image of Stoplights

- IG Which inputs contributed to an output?
- Neuron IG Which neurons contributed to an output? [Dhamdhere et al., 2018]

Image of Stoplights

IG Attribution to Inputs

- IG Which inputs contributed to an output?
- Neuron IG Which neurons contributed to an output? [Dhamdhere et al., 2018]

Image of Stoplights

IG Attribution to Inputs

IG after Top-1% Pruned

- IG Which inputs contributed to an output?
- Neuron IG Which neurons contributed to an output? [Dhamdhere et al., 2018]
- Targeted Neuron IG -Which neurons associated with the targeted region contributed to the output?

Image of Stoplights

IG Attribution to Inputs

IG after Top-1% Pruned

- IG Which inputs contributed to an output?
- Neuron IG Which neurons contributed to an output? [Dhamdhere et al., 2018]
- Targeted Neuron IG -Which neurons associated with the targeted region contributed to the output?

Image of Stoplights

IG Attribution to Inputs

IG after Top-1% Pruned

- IG Which inputs contributed to an output?
- Neuron IG Which neurons contributed to an output? [Dhamdhere et al., 2018]
- Targeted Neuron IG -Which neurons associated with the targeted region contributed to the output?

Image of Stoplights

IG Attribution to Inputs

IG after Top-1% Pruned

- IG Which inputs contributed to an output?
- Neuron IG Which neurons contributed to an output? [Dhamdhere et al., 2018]
- Targeted Neuron IG -Which neurons associated with the targeted region contributed to the output?

Image of Stoplights

IG Attribution to Inputs

IG after Top-1% Pruned

