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Bommasani et al. On the Opportunities and Risks of Foundation Models. Arxiv 2021.
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A Universal Architecture for General Proposes
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Transformers
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Vaswani et al. Attention is All you Need. NeurlPS 2017.



General Relation Modeling

Relatlon among Image Patches

Image =>

Language => Relation among Words
[SOS] Flowformer is a task-universal linear Transformer. [EOS]

Time => Relation among Time Points

Series

Agent Relation among Agent-Environment Interactions
" Trajectory
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Quadratic Complexity in Self-Attention
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Pair-wise Relation Modeling: Attention(Q, K, V') = softmax( 1%




Quadratic Complexity in Self-Attention

Can we remove Softmax function?

(QKT)V = Q(K'V) = 0(n%d) - 0(nd?)



Recap: Softmax Function

Softmax function is proposed as a differentiable generalization of the
“winner-take-all” picking maximum operation.

Competition
Mechanism

—

The key to avoid
trivial attention

Bridle et al. Training stochastic model recognition algorithms as networks can lead to maximum mutual
information estimation of parameters. NeurIPS 1989.
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Recap: Softmax Function

Softmax function is proposed as a differentiable generalization of the
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Flow Network Theory

. [Conservation Property]: The incoming flow
' capacity of each node is equal to the outgoing flow. :



Attention: A Flow Network View
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Attention: A Flow Network View
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Conservation in Attention
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[Incoming Flow Conservation]: Competition among Source tokens

[Outgoing Flow Conservation]: Competition among Sink tokens
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Flow-Attention
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Flow-Attention
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Flow-Attention
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Flow-Attention
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Flow-Attention
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Flow-Attention
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Efficiency and Universality
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[Efficiency]: All the calculations are in linear complexity.

[Universality]: The whole design is based on flow network without specific inductive biases.



Flowformer Experiments

Image BENCHMARKS TASK VERSION | LENGTH
LRA (20200) SEQUENCE | NORMAL | 1000~4000
WIKITEXT (2017) | LANGUAGE | CAUSAL 512
] IMAGENET (2009) VISION NORMAL | 49~3136
anguage UEA (2018) TIME SERIES | NORMAL | 29~1751
D4RL (2020) OFFLINE RL | CAUSAL 60
Time  Extensive tasks (covering 5 mainstream tasks)
Series .
 Normal and causal versions
* Vari nce lengths (29-4000
Agent arious sequence lengths (29 )
4 Trajectory « Extensive baselines (20+)




Flowformer Experiments

|
. | Vanilla
Task Metrics | Flowformer Performer Reformer
I | Transformer
|
L S ence Modelin I
ong sequ 9 AvgAcc (%)1 | 56.48 | 51.41 50.67 OOM
(LRA) : I
Vision Recognization I
Sedaeti Top-1Acc (%) 1 | 80.6 | 78 796 78.7
(ImageNet-1K) | I
|
Language Modeling , |
Perplexit | 308 375 33.6 33.0
(WikiText-103) plexity | : |
o N I l
ime series classification
Avg Acc (%) 1 | 73.0 I 715 71.9 71.9
(UEA) : I
Offline RL Avg Reward I
gReward T 1 5 g | 20 | 638476 639429 722+26
(D4RL) Avg Deviation | 1 I

Strong performance on all five mainstream tasks within the linear complexity.



Summary

Long Sequence
Model Efficiency

General Relation Quadratic Big Model © Task & Data
Modeling Complexity Universal
Flowformer

Linear complexity w.r.t. sequence length
Based on flow network & without specific inductive biases

Strong performance in Long Sequence, CV, NLP, Time Series, RL



Open Source
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Flowformer: Linearizing Transformers with Conservation Flows Contributors 2
Transformers have achieved impressive success in various areas. However, the attention mechanism has a i ) wuhaixu2016
quadratic complexity, significantly impeding Transformers from dealing with numerous tokens and scaling up to

bigger models. In pursuing the linear complexity and task-universal foundation model, we propose Flowformer @ Manchery Jialong Wu

[paper] with the following merits:

« Linear complexity w.r.t sequence length, can handle extermely long sequence (over 4k tokens)

« Without specific indcitve bias, purely derived from the flow network theory Languages

« Task-universal, showing strong performance in Long sequence, Vision, NLP, Time series, RL.
® Python 98.7% Shell 1.3%

https://github.com/thuml/Flowformer

Complete benchmarks & datasets & scripts
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