ICML | 2022

Thirty-ninth International Conference on Machine Learning

Flowformer: Linearizing Transformers with Conservation Flows

Haixu Wu ¹ Jialong Wu ¹ Jiehui Xu ¹ Jianmin Wang ¹ Mingsheng Long ¹

Foundation Models

[Data Universal]

Learn from various modalities

[Task Universal]

Adapt to a wide range of downstream tasks

A Universal Architecture for General Proposes

Image

Language

Time Series

Agent Trajectory **Universal Architecture**

A Universal Architecture for General Proposes

Image

Language

Time Series

Agent Trajectory

CNNs?

Locality

Shift Invariance (3)

Universal Architecture

A Universal Architecture for General Proposes

Specific Inductive Biases Limit the Model Universality

Transformers

Attention
$$(Q, K, V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$$

Dot-product Similarity & Without Specific Inductive Biases

Vaswani et al. Attention is All you Need. NeurIPS 2017.

General Relation Modeling

Pair-wise Relation Modeling: Attention $(Q, K, V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$

General Relation Modeling

Quadratic Complexity

Long Sequence Model Efficiency Big Model ⁽³⁾

Pair-wise Relation Modeling: Attention $(Q, K, V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$

Pair-wise Relation Modeling: $\operatorname{Attention}(Q,K,V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$

$$O(n^2d)$$

Pair-wise Relation Modeling: Attention $(Q, K, V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$

Can we remove Softmax function?

$$(QK^T)V = Q(K^TV) \implies \mathcal{O}(n^2d) \to \mathcal{O}(nd^2)$$

Recap: Softmax Function

Softmax function is proposed as a differentiable generalization of the "winner-take-all" picking maximum operation.

Bridle et al. Training stochastic model recognition algorithms as networks can lead to maximum mutual information estimation of parameters. *NeurIPS 1989.*

Recap: Softmax Function

Softmax function is proposed as a differentiable generalization of the "winner-take-all" picking maximum operation.

$$\frac{\phi(Q)(\phi(K)^T V)}{+} \qquad \longleftrightarrow \qquad \text{Softmax}\left(\frac{QK^T}{\sqrt{d}}\right) V$$

Competition Mechanism

Recap: Softmax Function

Softmax function is proposed as a differentiable generalization of the "winner-take-all" picking maximum operation.

$$\frac{\phi(Q)(\phi(K)^T V)}{+} \qquad \longleftrightarrow \qquad \text{Softmax}\left(\frac{QK^T}{\sqrt{d}}\right) V$$

Competition Mechanism

"fixed resource will cause competition"

Bridle et al. Training stochastic model recognition algorithms as networks can lead to maximum mutual information estimation of parameters. *NeurIPS 1989.*

Flow Network Theory

[Conservation Property]: The incoming flow capacity of each node is equal to the outgoing flow.

Attention: A Flow Network View

(a) Inner View

Attention: A Flow Network View

Conservation in Attention

[Incoming Flow Conservation]: Competition among Source tokens

[Outgoing Flow Conservation]: Competition among Sink tokens

$$\phi(\cdot) = \text{Sigmoid}(\cdot) \text{ or } \phi(\cdot) = \text{ELU}(\cdot) + 1.0$$

Incoming flow: $I_i = \phi(Q_i) \sum_j \phi(K_j)^T$

Incoming flow conservation: $\frac{\phi(Q)}{I}$

Incoming flow:
$$\frac{\phi(Q_i)}{I_i} \sum_j \phi(K_j)^T = \frac{I_i}{I_i} = 1$$

Incoming flow: $I_i = \phi(Q_i) \sum_j \phi(K_j)^T$

Incoming flow conservation: $\frac{\phi(Q)}{I}$

Conserved outgoing flow: $\widehat{\boldsymbol{o}} = \phi(\boldsymbol{K}) \sum_{i} \frac{\phi(Q_i)^T}{I_i}$

Outgoing flow: $O_i = \phi(K_i) \sum_j \phi(Q_j)^T$

Outgoing flow conservation: $\frac{\phi(K)}{o}$

Outgoing flow:
$$\frac{\phi(K_i)}{O_i} \sum_j \phi(Q_j)^T = \frac{O_i}{O_i} = 1$$

Outgoing flow: $O_i = \phi(K_i) \sum_j \phi(Q_j)^T$

Outgoing flow conservation: $\frac{\phi(K)}{o}$

Conserved incoming flow: $\hat{I} = \phi(\mathbf{Q}) \sum_{j} \frac{\phi(K_{j})^{T}}{o_{j}}$

Competition: $\widehat{\mathbf{V}} = \operatorname{Softmax}(\widehat{\mathbf{O}}) \odot \mathbf{V}$

Aggregation: $\mathbf{A} = \frac{\phi(\mathbf{Q})}{\mathbf{I}} \left(\phi(\mathbf{K})^\mathsf{T} \widehat{\mathbf{V}} \right)$

Allocation: $\mathbf{R} = \operatorname{Sigmoid}(\widehat{\mathbf{I}}) \odot \mathbf{A}$,

Competition:
$$\widehat{\mathbf{V}} = \operatorname{Softmax}(\widehat{\mathbf{O}}) \odot \mathbf{V}$$

Aggregation: $\mathbf{A} = \frac{\phi(\mathbf{Q})}{\mathbf{I}} (\phi(\mathbf{K})^{\mathsf{T}} \widehat{\mathbf{V}})$
Allocation: $\mathbf{R} = \operatorname{Sigmoid}(\widehat{\mathbf{I}}) \odot \mathbf{A}$,

Successfully bring the <u>Competition Mechanism</u> Into Attention design to avoid trivial attention

Efficiency and Universality

[Efficiency]: All the calculations are in linear complexity.

[Universality]: The whole design is based on flow network without specific inductive biases.

Flowformer Experiments

Image

Language

Time Series

Agent Trajectory

BENCHMARKS	TASK	VERSION	LENGTH
LRA (2020C)	SEQUENCE		1000~4000
WIKITEXT (2017)	Language	CAUSAL	512
IMAGENET (2009)	Vision	NORMAL	49~3136
UEA (2018)	TIME SERIES	NORMAL	29~1751
D4RL (2020)	OFFLINE RL	CAUSAL	60

- Extensive tasks (covering 5 mainstream tasks)
- Normal and causal versions
- Various sequence lengths (29-4000)
- Extensive baselines (20+)

Flowformer Experiments

Task	Metrics	Flowformer	Performer	Reformer	Vanilla Transformer
Long Sequence Modeling (LRA)	Avg Acc (%) ↑	56.48	51.41	50.67	ООМ
Vision Recognization (ImageNet-1K)	Top-1 Acc (%) ↑	80.6	78.1	79.6	78.7
Language Modeling (WikiText-103)	Perplexity ↓	30.8	37.5	33.6	33.0
Time series classification (UEA)	Avg Acc (%) ↑	73.0	71.5	71.9	71.9
Offline RL (D4RL)	Avg Reward ↑ Avg Deviation ↓	73.5 ± 2.9	63.8 ± 7.6	63.9 ± 2.9	72.2 ± 2.6
		·			

Strong performance on all five mainstream tasks within the linear complexity.

Summary

Linear complexity w.r.t. sequence length

Based on flow network & without specific inductive biases

Strong performance in Long Sequence, CV, NLP, Time Series, RL

Open Source

https://github.com/thuml/Flowformer

Complete benchmarks & datasets & scripts

Thank You!

whx20@mails.tsinghua.edu.cn

长按关注, 获取最新资讯