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Motivation

Deep Double Descent

* Deep neural networks are overparameterized -
rror

A

* As the model capacity increases, the double —
descent phenomenon occurs ——  Test

* Network pruning could also affect model
capacity

. i Number of parameters
Q: May the sparsification of DNNs also cause

double descent?



Sparse Double Descent

* Sparse double descent exists consistently across different experimental settings
under label noise

ResNet-18, CIFAR-10 ResNet-18, CIFAR-100 ResNet-101, Tiny ImageNet
. 1.00 . 1.00 -
g ] g = 0.80
£ 0.90] € 0.801 g
< ] < <
= ] = R -
‘2 0.80 7 ‘= 0.60 4 g 0.60
&= ] = E
= > > 0.52
2 or = 0.60 8
5 0.857 2 5
g g 3 0.50 1
< < <
é 0.80-_ é 0.55__ K 0.48-_
SSNSSES SN SN SRS S A SN e SNISES SRSS KNS SN SN SN SN
0 589 832 931 97.2 988 99.5 0 589 832 931 972 988 99.5 0 360 59.0 73.8 832 89.3 93.1 95.6
Sparsity (%) Sparsity (%) Sparsity (%)
Magnitude-based pruning Gradient-based pruning Random pruning
.. 1.00 .. 1.001 . 1.001
Q ] O
< < <
5 5 5
€ 0.757 € 0.75 g
< < ] <
2 0.50 2 0.50 5 0-507
= =R =
> T > >
= 0.507 % 0.50 1 % 0.45
< <t (.45 <C (.40
= 0.40 & ] &
LINNL O N Y N Y I O I Y N B Y I B 0'40_\\\|\\\|\\\|\\\|\\\|\\\|\\\ 0'35_\\\|\\\|\\\|\\\|\\\|\\\
0 589 832 931 97.2 988 995 0 589 832 931 97.2 988 995 0 589 832 931 972 988 995

Sparsity (%) Sparsity (%) Sparsity (%)



Sparse Double Descent

* Sparse double descent exits consistently across different experimental settings
under label noise

Finetuning Learning rate rewinding Scratch retraining
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Why Sparse Double Descent Occurs?

Minima flatness hypothesis

* Previous works hypothesized that ]
pruning encourages the optimizer to

move towards flatter minima [Bartoldson
et al., 2020]
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* We observed optimizer may not converge 0t
to flat regions as sparsity increases

Bartoldson, B., Morcos, A. S., Barbu, A., and Erlebacher, G. The generalization-stability tradeoff in neural network
pruning. NIPS, 2020.



Why Sparse Double Descent Occurs?

Learning Distance hypothesis

* model capacity could be restricted by the
|2 learning distance from initialization
[Nagarajan & Kolter, 2019]
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* Pruning may affect the learning distance
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* We observed the curve of learning
distance correlates with test accuracy
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Nagarajan, V. and Kolter, J. Z. Generalization in deep networks: The role of distance from initialization. arXiv preprint
arXiv:1901.01672, 2019.



Winning tickets may not always win

 Random reinitializations sometimes surpass the wining ticket
initializations in the Lottery Ticket Hypothesis [Frankle & Carbin, 2019]
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Frankle, J. and Carbin, M. The lottery ticket hypothesis: Finding sparse, trainable neural networks. ICLR, 2019.



