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Graph Neural Networks

Many real-world data are graphs.

Social Network Knowledge Graph Drugs and New materials

• Graph representation learning has been extensively applied in various application 

scenarios.

• GNN-based graph representation learning has attracted intensive interest by combining 

knowledge from both graph structure and node features



Drawbacks
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Drawbacks of current methods

1) Low Scalability

They can not scale well to large graphs due to the expensive computation cost and high memory usage.

• Repeatedly perform the computationally expensive and recursive feature smoothing

• Introduce high memory usage by storing the dense-form adjacency matrix on GPU. 

2) Shallow Architecture

The performance decreases as the layers become deeper.

• Information Propogation:  Shallow architecture can not involve the full graph information due a few propagations. 

• Nonlinear Transformation:  The expressive power is low due to a few  nonlinear transformation.



Observation

When applying                        as adjacency matrix ෡A , the stationary state follows

After infinite times of aggregation, the influence from node 𝑣𝑖 to 𝑣𝑗 is only determined by the degrees of them.

➢ Over-Smoothing Issue

➢ Over-Smoothing Distance

A smaller value indicates that the node is closer to the 

stationary state, i.e., closer to over-smoothing.



Observation
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• Many works (SGC, SIGN, GAMLP) propose to decouple the feature smoothing and 

feature transformation in each GCN layer.

• Nodes with high degrees should have relatively small smoothing steps than nodes with 

low degrees. Node-adaptive feature smoothing must be adopted to satisfy each node’s 

diverse needs of smoothing level.



Node-Adaptive Feature Smoothing

➢ Feature Smoothing:
We define the smoothing weight so that the smoothing operation can be performed in a node-adaptive manner.

➢ Feature Ensemble:

Different smoothing operators actually act as different knowledge extractors.

we vary the value of 𝑟 in the normalized adjacency matrix

Firstly perform the feature smoothing operation to generate corresponding smoothed features 

Then, we combine them with concatenating, mean pooling, or max pooling, etc.



Comparison with Existing GNNs
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➢ Deep Structural Information

By assigning each node with personalized smoothing weights, NAFS can gather deep structural 
information without encountering the over-smoothing issue.

➢ Efficiency

Compared with GAE and its variants, our proposed NAFS does not have any trainable parameters, giving it a 
significant advantage in efficiency.

➢ Memory Cost

NAFS only requires to store the sparse adjacency matrix and the smoothed features, and thus the 
memory cost is O(m + nf), which grows linearly with graph size  in typical real-world graphs.



End-to-end Comparison
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➢ Link Prediction

• The proposed NAFS consistently achieves the best or the second-best performance compared 

with all the baseline methods.

➢ Node Clustering

• Among three ensemble strategies, NAFS-concat has the overall best performance across the three datasets, 

which also consistently outperforms the strongest baseline - AGE. 

• Three NAFS variants outperform training-based GAE on all the four datasets, and they outperforms the 

current SOTA method, AGE, in most cases.



Efficiency & Scalability
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➢ Efficiency Analysis

• NAFS is significantly faster than the considered baseline methods on the three datasets

➢ Scalability Analysis

• NAFS can support the larger graphs (i.e., larger than 30,000 nodes) than the compared baselines. Besides, it 

is significantly faster than the compared baselines, especially for large graph datasets.



Interpretability
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➢ Visualization

• At hop 10, the node embedding produced by NAFS and SGC are both distinguishable.

• As the value of maximal smoothing step becomes larger, the node embedding of SGC falls into total disorder, like 

the situation showed by Figure. 6(n), 6(o) and 6(p).

• NAFS can support large hops while maintain the distinguishable results.



Conclusion

1. To the best of our knowledge, we are the first to explore the possibility that simple 
feature smoothing without any trainable parameters could even outperform state-of-the-
art GNNs; this incredible finding opens up a new direction towards efficient and scalable 
graph representation learning.

2. We propose NAFS, a node-adaptive feature smoothing approach along with various 
feature ensemble strategies, to fully exploit knowledge from both the graph structure and 
node features.

3. Empirical results demonstrate that NAFS performs comparably with or even outperforms 
the state-of-the-art GNNs, and achieves up to two orders of magnitude speedup.
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