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Graph Neural Networks

Many real-world data are graphs.

. ‘.f 2 - o D . C . .5.’.
‘j‘ '. , T | .‘ e ‘.

4 - ® W
=2t 0.ge® Lo
@ » ¥ "

‘ = D B ‘ ¥ ?. e "\ {

B B | ] ¢ A% or
b @ P e
’ ! N v Y o

\ e - n

Social Network Knowledge Graph Drugs and New materials

 Graph representation learning has been extensively applied in various application
scenarios.

« GNN-based graph representation learning has attracted intensive interest by combining
knowledge from both graph structure and node features




Drawbacks

Drawbacks of current methods

1) Low Scalability
They can not scale well to large graphs due to the expensive computation cost and high memory usage.

» Repeatedly perform the computationally expensive and recursive feature smoothing

 Introduce high memory usage by storing the dense-form adjacency matrix on GPU.

2) Shallow Architecture
The performance decreases as the layers become deeper.

 Information Propogation: Shallow architecture can not involve the full graph information due a few propagations.

» Nonlinear Transformation: The expressive power is low due to a few nonlinear transformation.




Observation

» Over-Smoothing Issue

When applying A =D""'AD™" as adjacency matrix A , the stationary state follows

. (di+D)"(dj+ DT
Aij = )
’ 2m+n
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After infinite times of aggregation, the influence from node v; to v; is only determined by the degrees of them.

» Over-Smoothing Distance

Definition 1 (Over-smoothing Distance). The Over-
smoothing Distance D;(k) parameterized by node i and A smaller value indicates that the node is closer to the
smoothing step k is defined as stationary state, i.e., closer to over-smoothing.

Di(k) = Dis([A"X];, [A*X];), @)




Observation
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Figure 2. The diverse smoothing speed across nodes with different
degrees. Nodes with larger degree have larger smoothing speed.

* Many works (SGC, SIGN, GAMLP) propose to decouple the feature smoothing and
feature transformation in each GCN layer.

* Nodes with high degrees should have relatively small smoothing steps than nodes with
low degrees. Node-adaptive feature smoothing must be adopted to satisfy each node’s

i diverse needs of smoothing level.



Node-Adaptive Feature Smoothing

» Feature Smoothing:
We define the smoothing weight so that the smoothing operation can be performed in a node-adaptive manner.
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Figure 3. An overview of node-adaptive feature smoothing.
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where K is the maximal smoothing step.

> Feature Ensemble:

Different smoothing operators actually act as different knowledge extractors.

we vary the value of 7 in the normalized adjacency matrix

-~

A, =D 1AD"
Firstly perform the feature smoothing operation to generate corresponding smoothed features {X®,X®, .. X™}

Then, we combine them with concatenating, mean pooling, or max pooling, etc.



Comparison with Existing GNNSs

» Deep Structural Information

By assigning each node with personalized smoothing weights, NAFS can gather deep structural
information without encountering the over-smoothing issue.

> Efficiency

Compared with GAE and its variants, our proposed NAFS does not have any trainable parameters, giving it a
significant advantage in efficiency.

» Memory Cost

NAFS only requires to store the sparse adjacency matrix and the smoothed features, and thus the
memory cost is O(m + nf), which grows linearly with graph size in typical real-world graphs.




End-to-end Comparison

Table 1. Link prediction performance comparison. Table 2. Node clustering performance comparison.
Cora [ Citeseer PubMed Methods Cora Citeseer PubMed Wiki

Methods A0C AP | AUC AP A0C P ACC NMI ARI ACC NMIT ARI ACC NMI ARI ACC NMI ARI
sSC 84,6200 885400 | 205400 85.0+£0.0 | 842400 87.8+0.0 GAE 533402 40.7+03 305+02 | 41.3+04 18.3£03 19.1+0.3 | 63.1£04 249+03 21.74+02 | 379+0.2 345403 18.9+0.2
DeepWalk 831403 850404 | 805405 83.6+04 | 844404 84.14+0.5 VGAE 56.0+0.3 38.5+04 34.7+03 | 444102 227+03 20.6+0.3 | 65.5£0.2 25.0+04 203402 | 45.1+04 46.8+03 26.3+04
GAE 91.0+0.5 92.0+04 | 89.5+03 899404 | 964+04 96.5+0.5 MGAE 63.4+05 45.6+03 43.6+04 | 63.5£04 39.7+04 425405 | 59.3£0.5 28.2+02 248404 | 529+03 51.0£0.4 37.9+0.5
VGAE 014405 926404 | 908404 920403 | 944405 947404 ARGA 63.9+04 451403 35.1+05 | 57.3+£0.5 35.2+03 34.0+04 | 68.0£0.5 27.6+04 29.0+04 | 38.1+£0.5 345403 11.2+04
ARGA 924404 932403 | 919405 93.0404 | 96.8+-0.3 97.1+0.5 ARVGA 64.0£0.5 449104 374205 | 544£0.5 25905 24.5+03 | 51.3+£04 11.7£03 7.8+0.2 | 38.7£04 33.9+£04 10.7£0.2
ARVGA 924404 92604 | 924405 93.04+03 | 96.5+0.5 96.8+04 AGC 68.9+0.5 53.7+03 48.6+0.3 | 66.9+0.5 41.1+04 41.9+0.5 | 69.8+04 31.6+03 31.8+04 | 47.7+0.3 453+0.5 343104
GALA 021403 922404 | 944405 948405 | 935404 945404 DAEGC 70.2+04  52.0+03 49704 | 67.2£0.5 39.7£0.5 41.1+£04 | 66.8£0.5 26.6£0.2 27.7+£0.3 | 48.2£04 448+0.4 33.1=0.3
AGE 95.1-0.5 94.6-0.5 | 963104 96.6-0.4 | 943103 935105 AGE 728405 58.140.6 56.3+0.4 | 70.0£03 44604 454405 | 699405 30.1+£04 314406 | 51.1£06 53.9:04 36.4+05
NAFS-mean | 92.620.0 939400 | 949400 959400 | 974400 97.2+0.0 NAFS-mean | 70.4+0.0 56.6+£0.0 48.0£0.0 | 7L.8+0.0 45.1+£0.0 47.6+£0.0 | 70.5+0.0 33.9+0.0 33.2+0.0 | 54.60.0 49.4+0.0 27.3£0.0
NAFS-max 93.0+0.0 942400 | 94.84+0.0 96.0+0.0 | 975400 97.1+0.0 NAFS-max 70.84£0.0 56.6+£00 49.0+0.0 | 70.1£0.0 45.1£0.0 44.7+£0.0 | 70.60.0 334100 33.14+0.0 | 51.4£0.0 458+0.0 255400
NAFS-concat | 92.6=0.0 93.8=0.0 | 93.740.0 93.120.0 | 97.6:0.0 97.2+0.0 NAFS-concat | 75.4+0.0 58.6+0.0 53.840.0 | 71.1£0.0 45.8+0.0 46.1+0.0 | 70.5£0.0 33.9+0.0 33.2+0.0 | 53.60.0 50.5+£0.0 26.3+0.0

» Link Prediction
* The proposed NAFS consistently achieves the best or the second-best performance compared

with all the baseline methods.

» Node Clustering
« Among three ensemble strategies, NAFS-concat has the overall best performance across the three datasets,
which also consistently outperforms the strongest baseline - AGE.
e Three NAFS variants outperform training-based GAE on all the four datasets, and they outperforms the

8 current SOTA method, AGE, in most cases.



Efficiency & Scalability

Table 3. Scalablity comparison with different sample sizes on the
ogbn-products dataset.
Methods 10,000 20,000 30,000 50,000 100,000

GAE 10.2s 36.3s OOM OOM O0OM
AGE 68.5s 256.2s  727.7s  2315.7s OOM
NAFS-mean 2 8s 6.5s 10.8s 13.8s 23.7s

Running Time (s)
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Figure 5. Efficiency comparison on the three ci-
tation networks.
» Efficiency Analysis

* NAFS is significantly faster than the considered baseline methods on the three datasets

» Scalability Analysis
* NAFS can support the larger graphs (i.e., larger than 30,000 nodes) than the compared baselines. Besides, it

is significantly faster than the compared baselines, especially for large graph datasets.
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Interpretability
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Figure 6. T-SNE visualization of node embedding on the Cora dataset.

» Visualization
At hop 10, the node embedding produced by NAFS and SGC are both distinguishable.

e Asthe value of maximal smoothing step becomes larger, the node embedding of SGC falls into total disorder, like

the situation showed by Figure. 6(n), 6(o) and 6(p).

* NAFS can support large hops while maintain the distinguishable results.
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Conclusion

1. To the best of our knowledge, we are the first to explore the possibility that simple
feature smoothing without any trainable parameters could even outperform state-of-the-
art GNNs; this incredible finding opens up a new direction towards efficient and scalable
graph representation learning.

2. We propose NAFS, a node-adaptive feature smoothing approach along with various

feature ensemble strategies, to fully exploit knowledge from both the graph structure and
node features.

3. Empirical results demonstrate that NAFS performs comparably with or even outperforms
the state-of-the-art GNNs, and achieves up to two orders of magnitude speedup.







