Matching Normalizing Flows and Probability Paths on Manifolds Heli Ben-Hamu*, Samuel Cohen*, Joey Bose, Brandon Amos, Aditya Grover, Maximilian Nickel, Ricky T. Q. Chen, Yaron Lipman FACEBOOK AI #### **Motivation** Scientific data from various fields lie on manifolds #### **Motivation** Scientific data from various fields lie on manifolds Continuous Normalizing Flows (CNFs) on manifolds #### **Motivation** Scientific data from various fields lie on manifolds #### Continuous Normalizing Flows (CNFs) on manifolds • High computational cost [Mathieu et al. '20] #### **Motivation** Scientific data from various fields lie on manifolds #### Continuous Normalizing Flows (CNFs) on manifolds - High computational cost [Mathieu et al. '20] - Do not scale to high dimensions [Rozen et al. '21] #### **Our Work:** A novel CNF training framework based on Probability Path - p_t Path Construction $$p_t(x) = \int p_t(x|y)p_1(y)dy$$ Path Construction $$p_t(x) = \int p_t(x|y)p_1(y)dy$$ **Target** - probability path p_t **Model** - probability path q_t with parameters θ **Target** - probability path p_t **Model** - probability path q_t with parameters θ **Goal:** find parameters θ s.t. $q_t \approx p_t$ **Target** - probability path p_t $\textbf{Model} \text{ - probability path } q_t \text{ with parameters } \theta$ **Goal:** find parameters θ s.t. $q_t \approx p_t$ $$\min_{\theta} \ d(p_t \parallel q_t)$$ **Target** - probability path p_t **Model** - probability path q_t with parameters θ CNF $$q_t = \phi_{t*} p_0 \qquad \frac{d}{dt} \phi_t = v_{\theta}(t, \phi_t)$$ $$\min_{\theta} \ d(p_t \parallel q_t)$$ **Target** - probability path p_t **Model** - a CNF ϕ_t parametrized by $v_{\theta}(t, x)$ CNF $$q_t = \phi_{t^*} p_0 \qquad \frac{d}{dt} \phi_t = v_{\theta}(t, \phi_t)$$ $$\min_{\theta} \ d(p_t \parallel q_t)$$ s.t. $q_t = \phi_{t^*} p_0$ **Target** - probability path p_t **Model** - a CNF ϕ_t parametrized by $v_{\theta}(t, x)$ CNF $$q_t = \phi_{t*} p_0 \qquad \frac{d}{dt} \phi_t = v_{\theta}(t, \phi_t)$$ Probability Path Divergence (PPD) $\min_{\theta} \mathbf{d}(p_t \parallel q_t)$ s.t. $q_t = \phi_{t^*} p_0$ $$\partial_t p_t + \operatorname{div}(p_t v) = 0$$ **Mass Conservation Formula** $$\partial_t p_t + \operatorname{div}(p_t v) = 0$$ #### **Mass Conservation Formula** $$p_t = \phi_{t^*} p_0$$ A CNF parametrized by v $$\partial_t \log p_t + \langle \nabla_x \log p_t, v \rangle + \operatorname{div}(v) = 0$$ #### **Logarithmic Mass Conservation Formula** $$p_t = \phi_{t^*} p_0$$ $$\partial_t \log p_t + \langle \nabla_x \log p_t, v \rangle + \operatorname{div}(v) = 0$$ #### Logarithmic Mass Conservation Formula $$p_t = \phi_{t^*} p_0$$ A CNF parametrized by v We define a family of probability path divergences (PPD) with integer parameter $\ell \geq 1$: $$d_{\ell}(p_t \parallel q_t) = \mathbb{E}_{t,x \sim p_t} |\partial_t \log p_t + \langle \nabla_x \log p_t, v \rangle + \operatorname{div}(v)|^{\ell}$$ We define a family of probability path divergences (PPD) with integer parameter $\ell \geq 1$: $$d_{\ell}(p_t \parallel q_t) = \mathbb{E}_{t,x \sim p_t} |\partial_t \log p_t + \langle \nabla_x \log p_t, v \rangle + \operatorname{div}(v)|^{\ell}$$ - $d_{\mathcal{C}}(p_t \parallel q_t) \ge 0$ by construction - $d_{\mathcal{C}}(p_t \parallel q_t) = 0 \text{ iff } p_t = q_t, \forall t \in [0,1]$ **Target** - probability path *p* **Model** - a CNF ϕ_t parametrized by $v_{\theta}(t, x)$ $$\min_{\theta} \mathbf{d}(p_t \parallel q_t)$$ s.t. $q_t = \phi_{t^*} p_0$ **Target** - probability path *p* **Model** - a CNF ϕ_t parametrized by $v_{\theta}(t, x)$ $$\min_{\theta} \mathbb{E}_{t,x \sim p_t} |\partial_t \log p_t + \langle \nabla_x \log p_t, v_\theta \rangle + \operatorname{div}(v_\theta)|^{\ell}$$ s.t. $q_t = \phi_{t^*} p_0$ **Target** - probability path *p* **Model** - a CNF ϕ_t parametrized by $v_{\theta}(t, x)$ Optimization and evaluation of PPD only require access to v_{θ} $$\min_{\theta} \mathbb{E}_{t,x \sim p_t} |\partial_t \log p_t + \langle \nabla_x \log p_t, v_\theta \rangle + \operatorname{div}(v_\theta)|^{\ell}$$ #### **Earth and Climate Dataset** | Dataset | Earthquake | Flood | Fire | Volcano | |---------------|------------------|-----------------|------------------|------------------| | Mixture vMF | 0.59 ± 0.01 | 1.09 ± 0.01 | -0.23 ± 0.02 | -0.31 ± 0.07 | | Stereographic | 0.43 ± 0.04 | 0.99 ± 0.04 | -0.40 ± 0.06 | -0.64 ± 0.20 | | Riemannian | 0.19 ± 0.04 | 0.90 ± 0.03 | -0.66 ± 0.05 | -0.97 ± 0.15 | | Moser Flow | -0.09 ± 0.02 | 0.62 ± 0.04 | -1.03 ± 0.03 | -2.02 ± 0.42 | | CNFM | -0.38 ± 0.01 | 0.25 ± 0.02 | -1.40 ± 0.02 | -2.38 ± 0.16 | #### NLL scores Fire Volcano Quakes Blue - generated samples, Red - test samples #### **Product of Manifolds - Robotics** #### **Limitations and Conclusions** #### **Conclusions** - Introduced a novel divergence allowing scalable training of CNFs - First application to higher dimensions on manifolds (~30) #### **Limitations** - Scaling to even higher dimensions (>100): - Biased loss gradients # Thank You! Coming Soon! (7) github.com/helibenhamu/CNFM