Matching Normalizing Flows and Probability Paths on Manifolds

Heli Ben-Hamu*, Samuel Cohen*, Joey Bose, Brandon Amos, Aditya Grover, Maximilian Nickel, Ricky T. Q. Chen, Yaron Lipman

FACEBOOK AI

Motivation

Scientific data from various fields lie on manifolds

Motivation

Scientific data from various fields lie on manifolds

Continuous Normalizing Flows (CNFs) on manifolds

Motivation

Scientific data from various fields lie on manifolds

Continuous Normalizing Flows (CNFs) on manifolds

• High computational cost [Mathieu et al. '20]

Motivation

Scientific data from various fields lie on manifolds

Continuous Normalizing Flows (CNFs) on manifolds

- High computational cost [Mathieu et al. '20]
- Do not scale to high dimensions [Rozen et al. '21]

Our Work:

A novel CNF training framework based on

Probability Path - p_t

Path Construction
$$p_t(x) = \int p_t(x|y)p_1(y)dy$$

Path Construction
$$p_t(x) = \int p_t(x|y)p_1(y)dy$$

Target - probability path p_t

Model - probability path q_t with parameters θ

Target - probability path p_t

Model - probability path q_t with parameters θ

Goal: find parameters θ s.t. $q_t \approx p_t$

Target - probability path p_t

 $\textbf{Model} \text{ - probability path } q_t \text{ with parameters } \theta$

Goal: find parameters θ s.t. $q_t \approx p_t$

$$\min_{\theta} \ d(p_t \parallel q_t)$$

Target - probability path p_t

Model - probability path q_t with parameters θ

CNF
$$q_t = \phi_{t*} p_0 \qquad \frac{d}{dt} \phi_t = v_{\theta}(t, \phi_t)$$

$$\min_{\theta} \ d(p_t \parallel q_t)$$

Target - probability path p_t

Model - a CNF ϕ_t parametrized by $v_{\theta}(t, x)$

CNF
$$q_t = \phi_{t^*} p_0 \qquad \frac{d}{dt} \phi_t = v_{\theta}(t, \phi_t)$$

$$\min_{\theta} \ d(p_t \parallel q_t)$$
s.t. $q_t = \phi_{t^*} p_0$

Target - probability path p_t

Model - a CNF ϕ_t parametrized by $v_{\theta}(t, x)$

CNF
$$q_t = \phi_{t*} p_0 \qquad \frac{d}{dt} \phi_t = v_{\theta}(t, \phi_t)$$

Probability Path Divergence (PPD) $\min_{\theta} \mathbf{d}(p_t \parallel q_t)$ s.t. $q_t = \phi_{t^*} p_0$

$$\partial_t p_t + \operatorname{div}(p_t v) = 0$$

Mass Conservation Formula

$$\partial_t p_t + \operatorname{div}(p_t v) = 0$$

Mass Conservation Formula

$$p_t = \phi_{t^*} p_0$$

A CNF parametrized by v

$$\partial_t \log p_t + \langle \nabla_x \log p_t, v \rangle + \operatorname{div}(v) = 0$$

Logarithmic Mass Conservation Formula

$$p_t = \phi_{t^*} p_0$$

$$\partial_t \log p_t + \langle \nabla_x \log p_t, v \rangle + \operatorname{div}(v) = 0$$

Logarithmic Mass Conservation Formula

$$p_t = \phi_{t^*} p_0$$

A CNF parametrized by v

We define a family of probability path divergences (PPD) with integer parameter $\ell \geq 1$:

$$d_{\ell}(p_t \parallel q_t) = \mathbb{E}_{t,x \sim p_t} |\partial_t \log p_t + \langle \nabla_x \log p_t, v \rangle + \operatorname{div}(v)|^{\ell}$$

We define a family of probability path divergences (PPD) with integer parameter $\ell \geq 1$:

$$d_{\ell}(p_t \parallel q_t) = \mathbb{E}_{t,x \sim p_t} |\partial_t \log p_t + \langle \nabla_x \log p_t, v \rangle + \operatorname{div}(v)|^{\ell}$$

- $d_{\mathcal{C}}(p_t \parallel q_t) \ge 0$ by construction
- $d_{\mathcal{C}}(p_t \parallel q_t) = 0 \text{ iff } p_t = q_t, \forall t \in [0,1]$

Target - probability path *p*

Model - a CNF ϕ_t parametrized by $v_{\theta}(t, x)$

$$\min_{\theta} \mathbf{d}(p_t \parallel q_t)$$
s.t. $q_t = \phi_{t^*} p_0$

Target - probability path *p*

Model - a CNF ϕ_t parametrized by $v_{\theta}(t, x)$

$$\min_{\theta} \mathbb{E}_{t,x \sim p_t} |\partial_t \log p_t + \langle \nabla_x \log p_t, v_\theta \rangle + \operatorname{div}(v_\theta)|^{\ell}$$
 s.t. $q_t = \phi_{t^*} p_0$

Target - probability path *p*

Model - a CNF ϕ_t parametrized by $v_{\theta}(t, x)$

Optimization and evaluation of PPD only require access to v_{θ}

$$\min_{\theta} \mathbb{E}_{t,x \sim p_t} |\partial_t \log p_t + \langle \nabla_x \log p_t, v_\theta \rangle + \operatorname{div}(v_\theta)|^{\ell}$$

Earth and Climate Dataset

Dataset	Earthquake	Flood	Fire	Volcano
Mixture vMF	0.59 ± 0.01	1.09 ± 0.01	-0.23 ± 0.02	-0.31 ± 0.07
Stereographic	0.43 ± 0.04	0.99 ± 0.04	-0.40 ± 0.06	-0.64 ± 0.20
Riemannian	0.19 ± 0.04	0.90 ± 0.03	-0.66 ± 0.05	-0.97 ± 0.15
Moser Flow	-0.09 ± 0.02	0.62 ± 0.04	-1.03 ± 0.03	-2.02 ± 0.42
CNFM	-0.38 ± 0.01	0.25 ± 0.02	-1.40 ± 0.02	-2.38 ± 0.16

NLL scores

Fire Volcano Quakes

Blue - generated samples, Red - test samples

Product of Manifolds - Robotics

Limitations and Conclusions

Conclusions

- Introduced a novel divergence allowing scalable training of CNFs
- First application to higher dimensions on manifolds (~30)

Limitations

- Scaling to even higher dimensions (>100):
 - Biased loss gradients

Thank You!

Coming Soon! (7)

github.com/helibenhamu/CNFM