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Generative Modeling on Manifolds

Motivation o

Scientific data from various fields lie on manifolds

Continuous Normalizing Flows (CNFs) on manifolds

* High computational cost [mathieu et al. *20]

* Do not scale to high dimensions [Rozen et al. *21] d

Fire locations on earth [Mathieu et al. ’20]
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Probability Path Matching
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Matching CNFs to Target Paths

Target - probability path p,

Model - a CNF ¢, parametrized by v,(%, x)

CNF
q; — ¢t*p()
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Probability Path Divergence
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Probability Path Divergence

0,1og p, + (V logp,, v) + div(v) = 0

Logarithmic Mass Conservation Formula

|

P = ¢t*p0

A CNF parametrized by v




Probability Path Divergence

We define a family of probability path divergences (PPD)
with integer parameter £ > 1:




Probability Path Divergence

We define a family of probability path divergences (PPD)
with integer parameter £ > 1:

« d/A(p, || g) = 0 by construction
» doAp, |l ) = 0iff p, = q,, Vi € [0,1]



Matching CNFs to Target Paths

Target - probability path p

Model - a CNF ¢, parametrized by v,(z, x)
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Target - probability path p

Model - a CNF ¢, parametrized by v,(z, x)

= 1pl01 108+ (V Jog p, vg) + div(v)|”|




Matching CNFs to Target Paths

Target - probability path p

Model - a CNF ¢, parametrized by v,(t, x)

Optimization and evaluation of PPD only require access to v,

min

in E,,,|0;10g p, + (V. Jog pr, vg) + div(v)|” |




Earth and Climate Dataset

Flood Volcano

Blue - generated samples, Red - test samples

Earthquake Flood Fire Volcano
Mixture vMF 0.5940.01 1.0940.01 | —0.234+0.02 | —0.31+0.07
Stereographic 0.43+0.04 0.99+0.04 | —0.40+0.06 | —0.6440.20
Riemannian 0.19+40.04 0.90+0.03 | —0.66+0.05 | —0.97+0.15
Moser Flow —0.09+0.02 | 0.62+0.04 | —1.03+0.03 | —2.02+0.42
CNFM —0.38+0.01 | 0.25+0.02 | —1.40+0.02 | —2.38+0.16
NLL scores




Product of Manifolds - Robotics




Limitations and Conclusions

Conclusions

* Introduced a novel divergence allowing scalable training of CNFs

* First application to higher dimensions on manifolds (~30)

Limitations

* Scaling to even higher dimensions (>100):

* Biased loss gradients



Thank You!

github.com/helibenhamu/CNFM



