Graph-Coupled Oscillator Networks T. Konstantin Rusch, Benjamin P. Chamberlain, James Rowbottom, Siddhartha Mishra, Michael M. Bronstein ## Oscillators (for GNNs?) ### Oscillators are ubiquitous in nature and engineering systems #### Why oscillators for GNNs: - Neurobiological motivation for networks of oscillatory neurons - Expressivity of oscillators (Fourier series approximation) - Well-behaved gradients of oscillators → Exploding/vanishing gradients problem mitigated? - Desirable stability properties: A solution for the oversmoothing problem? # Oscillatory inductive bias for GNNs ### Set-up: - Undirected Graph $\mathcal{G} = (\mathcal{V}, \mathcal{E} \subset \mathcal{V} \times \mathcal{V})$ - Edges \mathcal{E} : pairs of nodes $\{i, j\}$ (denoted $i \sim j$) - Node features X GraphCON based on graph dynamical system: $$\mathbf{X}'' = \sigma(\mathbf{F}_{\theta}(\mathbf{X}, t)) - \gamma \mathbf{X} - \alpha \mathbf{X}' \iff \begin{cases} \mathbf{Y}' = \sigma(\mathbf{F}_{\theta}(\mathbf{X}, t)) - \gamma \mathbf{X} - \alpha \mathbf{Y}, \\ \mathbf{X}' = \mathbf{Y} \end{cases}$$ ullet General learnable 1-neighborhood coupling $\mathbf{F}_{ heta}$ (e.g. GCN, GAT,...): $$(\mathbf{F}_{\theta}(\mathbf{X},t))_{i,i} = \mathbf{F}_{\theta}(\mathbf{X}_{i}(t),\mathbf{X}_{j}(t),t) \quad \forall i \sim j,$$ - Activation function σ - Control parameters $\gamma, \alpha > 0$ IMEX discretizaton yields GraphCON: $$\mathbf{Y}^{n} = \mathbf{Y}^{n-1} + \Delta t[\sigma(\mathbf{F}_{\theta}(\mathbf{X}^{n-1}, t^{n-1})) - \gamma \mathbf{X}^{n-1} - \alpha \mathbf{Y}^{n-1}],$$ $$\mathbf{X}^{n} = \mathbf{X}^{n-1} + \Delta t \mathbf{Y}^{n},$$ for $n = 1, \ldots, N$, and - $\Delta t > 0$ time-step - $\mathbf{X}^n, \mathbf{Y}^n$ hidden node features at time $t^n = n\Delta t$ ### Properties of GraphCON We provide mathematical definition of oversmoothing: exponential convergence to zero of layer-wise Dirichlet energy ### Main result: **GraphCON** mitigates the oversmoothing problem #### We further show: - GraphCON mitigates the exploding gradients problem - GraphCON mitigates the vanishing gradients problem - Naive multi-layer stacking of GNNs corresponds to fixed-point iteration of GraphCON → higher expressive power of GraphCON Table: Transductive node classification test accuracy (MAP in %) on heterophilic datasets. | Homophily level | Texas
0.11 | Wisconsin 0.21 | Cornell 0.30 | |-----------------|----------------|----------------------------------|----------------| | GPRGNN | 78.4 ± 4.4 | 82.9 ± 4.2 | 80.3 ± 8.1 | | H2GCN | 84.9 ± 7.2 | 87.7 ± 5.0 | 82.7 ± 5.3 | | GCNII | 77.6 ± 3.8 | 80.4 ± 3.4 | 77.9 ± 3.8 | | Geom-GCN | 66.8 ± 2.7 | 64.5 ± 3.7 | 60.5 ± 3.7 | | PairNorm | 60.3 ± 4.3 | 48.4 ± 6.1 | 58.9 ± 3.2 | | GraphSAGE | 82.4 ± 6.1 | 81.2 ± 5.6 | 76.0 ± 5.0 | | MLP | 80.8 ± 4.8 | 85.3 ± 3.3 | 81.9 ± 6.4 | | GAT | 52.2 ± 6.6 | 49.4 ± 4.1 | 61.9 ± 5.1 | | GraphCON-GAT | 82.2 ± 4.7 | $\textbf{85.7} \pm \textbf{3.6}$ | 83.2 ± 7.0 | | GCN | 55.1 ± 5.2 | 51.8 ± 3.1 | 60.5 ± 5.3 | | GraphCON-GCN | 85.4 ± 4.2 | $\textbf{87.8} \pm \textbf{3.3}$ | 84.3 ± 4.8 | Table: Test accuracy in % on MNIST Superpixel 75. | Model | Test accuracy | |-------------------|---------------| | Model | Test accuracy | | ChebNet | 75.62 | | MoNet | 91.11 | | PNCNN | 98.76 | | SplineCNN | 95.22 | | GIN | 97.23 | | GraphCON-GIN | 98.53 | | GatedGCN | 97.95 | | GraphCON-GatedGCN | 98.27 | | GCN | 88.89 | | GraphCON-GCN | 98.68 | | GAT | 96.19 | | GraphCON-GAT | 98.91 | Table: Test mean absolute error on ZINC (without edge features, small 12k version) restricted to small network sizes of $\sim 100k$ parameters. | Model | Test MAE | |--------------|-------------------------------| | GIN | 0.41 ± 0.008 | | GatedGCN | 0.42 ± 0.006 | | GraphSAGE | 0.41 ± 0.005 | | MoNet | 0.41 ± 0.007 | | PNA | $\boldsymbol{0.32 \pm 0.032}$ | | DGN | $\boldsymbol{0.22 \pm 0.010}$ | | GCN | 0.47 ± 0.002 | | GraphCON-GCN | $\boldsymbol{0.22 \pm 0.004}$ | | GAT | 0.46 ± 0.002 | | GraphCON-GAT | 0.23 ± 0.004 | ### Conclusion / Outlook - GraphCON: physics-inspired framework to construct very deep GNNs - GraphCON provably overcomes the oversmoothing problem as well as exploding/vanishing gradient problem - GraphCON reaches SOTA on a variety of different graph learning tasks Main message: "Don't stack GNNs naively – use GraphCON!" ### **Future projects:** • Physics-inspired methods work – GraphCON is only the start