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Oscillators (for GNNs?)

Oscillators are ubiquitous in nature and engineering systems

Why oscillators for GNNs:
• Neurobiological motivation for networks of oscillatory neurons
• Expressivity of oscillators (Fourier series approximation)
• Well-behaved gradients of oscillators → Exploding/vanishing gradients problem mitigated?
• Desirable stability properties: A solution for the oversmoothing problem?



Oscillatory inductive bias for GNNs

Set-up:
• Undirected Graph G = (V, E ⊆ V × V)
• Edges E : pairs of nodes {i, j} (denoted i ∼ j)
• Node features X

GraphCON based on graph dynamical system:

X′′ = σ(Fθ(X, t)) − γX − αX′ ⇐⇒
{

Y′ = σ(Fθ(X, t)) − γX − αY,

X′ = Y

• General learnable 1-neighborhood coupling Fθ (e.g. GCN, GAT,. . . ):

(Fθ(X, t))ij = Fθ (Xi(t), Xj(t), t) ∀i ∼ j,

• Activation function σ

• Control parameters γ, α > 0



IMEX discretizaton yields GraphCON:

Yn = Yn−1 + ∆t[σ(Fθ(Xn−1, tn−1)) − γXn−1 − αYn−1],
Xn = Xn−1 + ∆tYn,

for n = 1, . . . , N , and
• ∆t > 0 time-step
• Xn, Yn hidden node features at time tn = n∆t

time



Properties of GraphCON

We provide mathematical definition of oversmoothing:
exponential convergence to zero of layer-wise Dirichlet
energy

Main result:
GraphCON mitigates the oversmoothing problem
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We further show:
• GraphCON mitigates the exploding gradients problem
• GraphCON mitigates the vanishing gradients problem
• Naive multi-layer stacking of GNNs corresponds to fixed-point iteration of GraphCON → higher

expressive power of GraphCON



Table: Transductive node classification test accuracy (MAP in %) on heterophilic datasets.

Texas Wisconsin Cornell
Homophily level 0.11 0.21 0.30

GPRGNN 78.4 ± 4.4 82.9 ± 4.2 80.3 ± 8.1
H2GCN 84.9 ± 7.2 87.7 ± 5.0 82.7 ± 5.3
GCNII 77.6 ± 3.8 80.4 ± 3.4 77.9 ± 3.8
Geom-GCN 66.8 ± 2.7 64.5 ± 3.7 60.5 ± 3.7
PairNorm 60.3 ± 4.3 48.4 ± 6.1 58.9 ± 3.2
GraphSAGE 82.4 ± 6.1 81.2 ± 5.6 76.0 ± 5.0
MLP 80.8 ± 4.8 85.3 ± 3.3 81.9 ± 6.4

GAT 52.2 ± 6.6 49.4 ± 4.1 61.9 ± 5.1
GraphCON-GAT 82.2 ± 4.7 85.7 ± 3.6 83.2 ± 7.0

GCN 55.1 ± 5.2 51.8 ± 3.1 60.5 ± 5.3
GraphCON-GCN 85.4 ± 4.2 87.8 ± 3.3 84.3 ± 4.8



Table: Test accuracy in % on MNIST
Superpixel 75.

Model Test accuracy

ChebNet 75.62
MoNet 91.11
PNCNN 98.76
SplineCNN 95.22

GIN 97.23
GraphCON-GIN 98.53

GatedGCN 97.95
GraphCON-GatedGCN 98.27

GCN 88.89
GraphCON-GCN 98.68

GAT 96.19
GraphCON-GAT 98.91

Table: Test mean absolute error on ZINC
(without edge features, small 12k version)
restricted to small network sizes of ∼ 100k
parameters.

Model Test MAE

GIN 0.41 ± 0.008
GatedGCN 0.42 ± 0.006
GraphSAGE 0.41 ± 0.005
MoNet 0.41 ± 0.007
PNA 0.32 ± 0.032
DGN 0.22 ± 0.010

GCN 0.47 ± 0.002
GraphCON-GCN 0.22 ± 0.004

GAT 0.46 ± 0.002
GraphCON-GAT 0.23 ± 0.004



Conclusion / Outlook

• GraphCON: physics-inspired framework to construct very deep GNNs
• GraphCON provably overcomes the oversmoothing problem as well as exploding/vanishing gradient

problem
• GraphCON reaches SOTA on a variety of different graph learning tasks

Main message: ”Don’t stack GNNs naively – use GraphCON!”

Future projects:
• Physics-inspired methods work – GraphCON is only the start
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