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We propose a novel neural network Poisson process model which:
@ Flexibly learns the connections between stimuli and neural as well as neural and
behavioural responses;
@ Jointly fits both behavioural and neural data;
@ Derives spike count statistics disentangled from chosen temporal bin sizes.
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Introduction

We propose a novel neural network Poisson process model which:

@ Flexibly learns the connections between stimuli and neural as well as neural and
behavioural responses;

@ Jointly fits both behavioural and neural data;

Derives spike count statistics disentangled from chosen temporal bin sizes.

@ Handles variabilities between response times across different trials by a temporal
rescaling mechanism;
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Figure 1: Transformation of the Poisson point process in real time to the rescaled time domain.
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We apply the method to two neural/behavioural datasets concerning visual
discrimination tasks:

@ Collected using Neuropixel probes from mice (Steinmetz dataset [1]).

@ Output of a hierarchical network model with reciprocally connected sensory and
integration circuits (Synthetic dataset [2]).
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Figure 2: a. Steinmetz’ visual discrimination task. b. Synthetic network model.

Neural Network Poisson Models for Behavioural and Neural Spike Train Data ICML 2022



Introduction Methodology Results Conclusion References

[ ]e]

Methodology

Let 0 < s < s? <,...,< s < W, < W be a realization from an inhomogeneous
Poisson point process, n, with an intensity function \,(t') satisfying 0 < X\(t') for all
t' € (0, W,]. Define a one-to-one monotonic transformation function, where:

z, 1 [0, W,] — [0, W], and z,(0) = 0, z,(W,) = W

Assume 0 < s' < s? <,...,< s < W where Vk € {1,...,j}; s* = z,(s'*). Then s*
are a realization from a second inhomogeneous Poisson point process with A\(t) = An(t')
where t = z,(t').
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Methodology

Let 0 < s < s? <,...,< s < W, < W be a realization from an inhomogeneous
Poisson point process, n, with an intensity function \,(t') satisfying 0 < X\(t') for all
t' € (0, W,]. Define a one-to-one monotonic transformation function, where:

z, 1 [0, W,] — [0, W], and z,(0) = 0, z,(W,) = W

Assume 0 < s' < s? <,...,< s < W where Vk € {1,...,j}; s* = z,(s'*). Then s*
are a realization from a second inhomogeneous Poisson point process with A\(t) = An(t')
where t = z,(t').

Proposition

For a linear transformation function z,(.), as defined in Theorem, the cumulative intensity

function of the original and second point process realizations are related as: A(t) =

1 ALY
8(z ') Adlt).
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Network Architecture
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Results on Synthetic Dataset

D1, Coherence level = 0.8 = B o6 D2, Coherence level = 0.8 PP,
Fitted Fitted
0 ® Emprica 055 ° Empirical 055
T % 00 T 050
(] 0.45 (=2 0.45
£ 20 £
= 0a0 = 0.40
w w
10
e? 035 . 035
ol 0.30 0.30
00 01 oz o3 04 o5 06 G0 01 oz 03 o4 05 0%
Time since stimulus (s) Time since stimulus (s)
Average behavioural response rate, D1 Average behavioural response rate, D2 o
0 >
: 9 - 3
125 NNENXN e 125 N s C
NERRNNE % g Ll b % g
00 g 15 Li0f 1o
w 4 10,
S 2 5 2
QE 75 i oo 75 ©
v} S
< 5.0 < ~< 5.0 <
| 8 8
25 é 25 é
I | | NI et g
DD S D LS B = DY =
o S P ~ RPN ~
AR A T et
AN (spikes/s) AN (spikes/s)

Figure 3: Upper panels. The empirically derived firing rates (dashed lines) compared to the
neural activity estimated using the proposed model (solid lines).
Lower panels. The average response rate (purple bars) and the proportion of trials (orange
bars) with the neural response in each interval.
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Results on Steinmetz Dataset
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Figure 4: Left panels. The empirically derived firing rates (dashed lines) compared to the neural
activity estimated using the proposed model (solid lines).

Middle panels. The average response rate (purple bars) and the proportion of trials (orange
bars) with the neural response in each interval.

Right panels. Neural activities for contralateral and ipsilateral stimuli.
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Behavioural Predictions of the Model
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Figure 5: Fitted behavioral intensities (solid lines) match the empirical response rate densities
(colored bars) for high contrast on RIGHT and LEFT.
Upper panels: Steinmetz dataset, Lower panels: Synthetic dataset.
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Comparison with Baselines

/s
LY

NLL over all regions
i

|

[

GLM
NHPoisson
U-GP
U-ANN
P-GPL
NNPoisson

N

Method

Figure 6: Total NLL of the estimated neural intensity function on Steinmetz test set over all the
37 test regions in the test set.
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linear-nonlinear-Poisson (LNP) models.
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Conclusion

The following problems are suggested for further study:

o Capturing richer aspects of behaviour that are known to couple to
neural activity.

o Integrating and/or substituting spiking activity with calcium imaging.

@ Implementing novel approaches such as the auto-regressive
linear-nonlinear-Poisson (LNP) models.

o Differentiating more finely the activity in different regions.
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Thank You So Much!

For more details, please refer to our paper:
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