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Introduction

We propose a novel neural network Poisson process model which:

Flexibly learns the connections between stimuli and neural as well as neural and
behavioural responses;

Jointly fits both behavioural and neural data;

Derives spike count statistics disentangled from chosen temporal bin sizes.

Handles variabilities between response times across different trials by a temporal
rescaling mechanism;
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Figure 1: Transformation of the Poisson point process in real time to the rescaled time domain.
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We apply the method to two neural/behavioural datasets concerning visual
discrimination tasks:

Collected using Neuropixel probes from mice (Steinmetz dataset [1]).

Output of a hierarchical network model with reciprocally connected sensory and
integration circuits (Synthetic dataset [2]).

Figure 2: a. Steinmetz’ visual discrimination task. b. Synthetic network model.
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Methodology

Theorem

Let 0 < s ′1 < s ′2 <, . . . , < s ′j ≤ Wn ≤ W be a realization from an inhomogeneous
Poisson point process, n, with an intensity function λn(t

′) satisfying 0 < λn(t
′) for all

t′ ∈ (0,Wn]. Define a one-to-one monotonic transformation function, where:

zn : [0,Wn] → [0,W ], and zn(0) = 0, zn(Wn) = W

Assume 0 < s1 < s2 <, . . . , < s j ≤ W where ∀k ∈ {1, . . . , j}; sk = zn(s
′k). Then sk

are a realization from a second inhomogeneous Poisson point process with λ(t) = λn(t
′)

where t = zn(t
′).

Proposition

For a linear transformation function zn(.), as defined in Theorem, the cumulative intensity
function of the original and second point process realizations are related as: Λ(t) =

1

∂t (z
−1
n )

· Λn(t
′).
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ham and Yu, 2014; Whiteway and Butts, 2019; Yu et al.,
2006); with the structure in these spaces, and perhaps the dy-
namical evolution of the states in these spaces, subsequently
being related to task variables. These methods are typically
useful since the number of dimensions of task input and/or
output variability is often rather modest, implying that much
of the high dimensional space that could potentially be oc-
cupied is either empty or at least not relevant for behaviour.
However, they typically have to use intrinsic metrics such
as variance to specify which low dimensional projections
should be considered – and this again begs the question as
to what is important.

Of course, there are methods that combine various of these
approaches (Kobak et al., 2016; Kriegeskorte and Kievit,
2013), and continual innovations. Along these lines, (Dez-
fouli et al., 2018) recently suggested a combined approach,
with an RNN being trained to tie fMRI BOLD activity across
the brain directly with ongoing behaviour. fMRI data al-
lowed for a form of model inversion, pinning down the RNN
state and so implying how behaviour would be realized neu-
rally. However, this approach is licensed by the invertibility
that is at least plausible because of the high dimensionality
of fMRI – something that is not currently guaranteed to be
available on a trial-by-trial basis in neural recordings.

Here, motivated by previous approaches and recent neural
network point-process models (Omi et al., 2019), we sug-
gest a novel neural network Poisson process model which:
(i) flexibly learns the connections between environmental
stimuli and neural representations, and between neural rep-
resentations and behavioural responses; (ii) jointly fits both
behavioural and neural data; (iii) handles variabilities be-
tween response times in different trials of an experiments
by a temporal rescaling mechanism, (iv) allows us to trace
different stimulus-driven behavioural patterns back to their
neural substrates and (v) derives spike count statistics dis-
entangled from chosen temporal bin sizes. The framework
allows efficient training of the model without making as-
sumptions about the functional form of the relationship
between input stimuli and neural and behavioural processes.
We apply the method to two neural/behavioural datasets
concerning visual discrimination tasks: one collected using
Neuropixel probes (Steinmetz et al., 2019) from mice, and
the other the output of a hierarchical network model with
reciprocally connected sensory and integration circuits that
was designed to model behaviour in a motion-based task
(Wimmer et al., 2015). We show that our method is able
in both cases to link behavioural data with their underlying
neural processes and input stimuli; the synthetic dataset
allows us to compare our results against ground truth.
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ham and Yu, 2014; Whiteway and Butts, 2019; Yu et al.,
2006); with the structure in these spaces, and perhaps the dy-
namical evolution of the states in these spaces, subsequently
being related to task variables. These methods are typically
useful since the number of dimensions of task input and/or
output variability is often rather modest, implying that much
of the high dimensional space that could potentially be oc-
cupied is either empty or at least not relevant for behaviour.
However, they typically have to use intrinsic metrics such
as variance to specify which low dimensional projections
should be considered – and this again begs the question as
to what is important.

Of course, there are methods that combine various of these
approaches (Kobak et al., 2016; Kriegeskorte and Kievit,
2013), and continual innovations. Along these lines, (Dez-
fouli et al., 2018) recently suggested a combined approach,
with an RNN being trained to tie fMRI BOLD activity across
the brain directly with ongoing behaviour. fMRI data al-
lowed for a form of model inversion, pinning down the RNN
state and so implying how behaviour would be realized neu-
rally. However, this approach is licensed by the invertibility
that is at least plausible because of the high dimensionality
of fMRI – something that is not currently guaranteed to be
available on a trial-by-trial basis in neural recordings.

Here, motivated by previous approaches and recent neural
network point-process models (Omi et al., 2019), we sug-
gest a novel neural network Poisson process model which:
(i) flexibly learns the connections between environmental
stimuli and neural representations, and between neural rep-
resentations and behavioural responses; (ii) jointly fits both
behavioural and neural data; (iii) handles variabilities be-
tween response times in different trials of an experiments
by a temporal rescaling mechanism, (iv) allows us to trace
different stimulus-driven behavioural patterns back to their
neural substrates and (v) derives spike count statistics dis-
entangled from chosen temporal bin sizes. The framework
allows efficient training of the model without making as-
sumptions about the functional form of the relationship
between input stimuli and neural and behavioural processes.
We apply the method to two neural/behavioural datasets
concerning visual discrimination tasks: one collected using
Neuropixel probes (Steinmetz et al., 2019) from mice, and
the other the output of a hierarchical network model with
reciprocally connected sensory and integration circuits that
was designed to model behaviour in a motion-based task
(Wimmer et al., 2015). We show that our method is able
in both cases to link behavioural data with their underlying
neural processes and input stimuli; the synthetic dataset
allows us to compare our results against ground truth.
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lowed for a form of model inversion, pinning down the RNN
state and so implying how behaviour would be realized neu-
rally. However, this approach is licensed by the invertibility
that is at least plausible because of the high dimensionality
of fMRI – something that is not currently guaranteed to be
available on a trial-by-trial basis in neural recordings.

Here, motivated by previous approaches and recent neural
network point-process models (Omi et al., 2019), we sug-
gest a novel neural network Poisson process model which:
(i) flexibly learns the connections between environmental
stimuli and neural representations, and between neural rep-
resentations and behavioural responses; (ii) jointly fits both
behavioural and neural data; (iii) handles variabilities be-
tween response times in different trials of an experiments
by a temporal rescaling mechanism, (iv) allows us to trace
different stimulus-driven behavioural patterns back to their
neural substrates and (v) derives spike count statistics dis-
entangled from chosen temporal bin sizes. The framework
allows efficient training of the model without making as-
sumptions about the functional form of the relationship
between input stimuli and neural and behavioural processes.
We apply the method to two neural/behavioural datasets
concerning visual discrimination tasks: one collected using
Neuropixel probes (Steinmetz et al., 2019) from mice, and
the other the output of a hierarchical network model with
reciprocally connected sensory and integration circuits that
was designed to model behaviour in a motion-based task
(Wimmer et al., 2015). We show that our method is able
in both cases to link behavioural data with their underlying
neural processes and input stimuli; the synthetic dataset
allows us to compare our results against ground truth.
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Results on Synthetic Dataset
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Figure 3: Upper panels. The empirically derived firing rates (dashed lines) compared to the
neural activity estimated using the proposed model (solid lines).

Lower panels. The average response rate (purple bars) and the proportion of trials (orange
bars) with the neural response in each interval.
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Results on Steinmetz Dataset

Figure 4: Left panels. The empirically derived firing rates (dashed lines) compared to the neural
activity estimated using the proposed model (solid lines).

Middle panels. The average response rate (purple bars) and the proportion of trials (orange
bars) with the neural response in each interval.

Right panels. Neural activities for contralateral and ipsilateral stimuli.
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Behavioural Predictions of the Model

a) b)

d)c)

Figure 5: Fitted behavioral intensities (solid lines) match the empirical response rate densities
(colored bars) for high contrast on RIGHT and LEFT.

Upper panels: Steinmetz dataset, Lower panels: Synthetic dataset.
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Comparison with Baselines
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Figure 6: Total NLL of the estimated neural intensity function on Steinmetz test set over all the
37 test regions in the test set.
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Conclusion

The following problems are suggested for further study:

Capturing richer aspects of behaviour that are known to couple to
neural activity.

Integrating and/or substituting spiking activity with calcium imaging.

Implementing novel approaches such as the auto-regressive
linear-nonlinear-Poisson (LNP) models.

Differentiating more finely the activity in different regions.
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Thank You So Much!
For more details, please refer to our paper:
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