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Gaussian Bandits with Side Observations

Model (introduced in Wu, György, and Szepesvári 2015):

▶ K Gaussian arms with (unknown) mean rewards (µ1, . . . , µK )

▶ Known feedback matrix Σ = (σi ,j)i ,j∈[K ]

▶ At each round t, by playing an action i ∈ [K ] the player:
▶ collects Xi,t ∼ N (µi , σ

2
i,i )

▶ observes Xj,t ∼ N (µj , σ
2
i,j) for each arm j ∈ [K ]

▶ (rewards are realized independently)

Goal: Maximize the total expected reward collected



Gaussian Bandits with Side Observations

Previous related work:

▶ Wu, György, and Szepesvári 2015: asymptotically optimal
regret for the special case where σi ,j ∈ {σ,∞}

▶ Graph-structured feedback: Given (directed) graph of arms
(nodes), playing arm i reveals the (not necessarily Gaussian)
reward of every adjacent arm

Our contribution:

▶ Asymptotic LP lower bound for the case of general feedback
Σ = (σi ,j)i ,j∈[K ]

▶ An asymptotically optimal LP-based bandit algorithm for the
general setting



Linear Programming-based Lower Bound

Formulation: For any reward vector µ ∈ [0,∞)K , we define:

C (µ) =


∑

j∈[K ]
cj
σ2
j,i
≥ 2

∆2
i (µ)

, ∀i ̸= i∗(µ)

c ∈ [0,∞)K : ∑
j∈[K ]

cj
σ2
j,i
≥ 2

∆2
min(µ)

, i = i∗(µ)

 ,

where i∗(µ) = argmaxi∈[K ]µi , ∆i (µ) = maxj∈[K ] µj − µi , and
∆min(µ) = mini∈[K ],∆i (µ)>0∆i (µ).

Theorem
For environment (µ,Σ), the regret of any consistent policy satisfies

lim inf
T→∞

RT (µ)

logT
≥ min

c∈C(µ)

∑
i∈[K ]

ci ∆i (µ).



LP-based Algorithm with Asymptotically Optimal Regret

Notation:

▶ Let Ni (t) the number of samples arm i has been played so far

▶ Maximum-Likelihood reward estimator at round t:

µ̂i (t) =
t−1∑
τ=1

Xi ,τ

σ2
iτ ,i

/ t−1∑
τ=1

1

σ2
iτ ,i

∀i ∈ [K ],

where iτ the arm played at round τ

Algorithm: At each round t, the algorithm performs one of the
following:

▶ Greedy exploitation: Play the arm of best estimated reward

▶ Uniform exploration: Ensure C (µ̂) is “close” to C (µ)

▶ LP-dictated exploration: Follow the actions indicated by
(estimated) LP based on C (µ̂)



LP-based Algorithm with Asymptotically Optimal Regret

At each round t:

Greedy exploitation: If (N1(t)
log t ,

N2(t)
log t , . . . ,

NK (t)
log t ) ∈ C (µ̂), then play

it ← arg max
i∈[K ]

µ̂i (t)



LP-based Algorithm with Asymptotically Optimal Regret

At each round t:

ne : # exploration rounds (initialized at 0)

Uniform exploration: If (N1(t)
log t ,

N2(t)
log t , . . . ,

NK (t)
log t ) /∈ C (µ̂) and

min
i∈[K ]

t−1∑
τ=1

1

σ2
iτ ,i

< o(ne(t)) (not uniformly explored)

then play

it ← arg min
k∈[K ]

σ2
k,i , where i = arg min

k∈[K ]

t−1∑
τ=1

1

σ2
iτ ,k

,

and increase ne by 1



LP-based Algorithm with Asymptotically Optimal Regret

At each round t:

LP-dictated exploration:

If (N1(t)
log t ,

N2(t)
log t , . . . ,

NK (t)
log t ) /∈ C (µ̂) and arms uniformly explored,

then

▶ Compute c∗(µ̂(t))← argminc∈C(µ̂(t))

∑
i∈[K ] ci ∆i (µ̂(t))

▶ Play arm

it = i with Ni (t) < c∗i (µ̂(t)) log t,

and increase ne by 1



LP-based Algorithm with Asymptotically Optimal Regret

Algorithm: At each round t, the algorithm performs either:

▶ Greedy exploitation: Play the arm of best estimated reward

▶ Uniform exploration: Ensure C (µ̂) is “close” to C (µ)

▶ LP-dictated exploration: Follow the actions indicated by
(estimated) LP based on C (µ̂)

Theorem
The regret of our algorithm satisfies

lim sup
T→∞

RT (µ)

logT
≤

∑
j∈[K ]

∆j(µ)c
∗
j (µ) (up to constant factors)
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