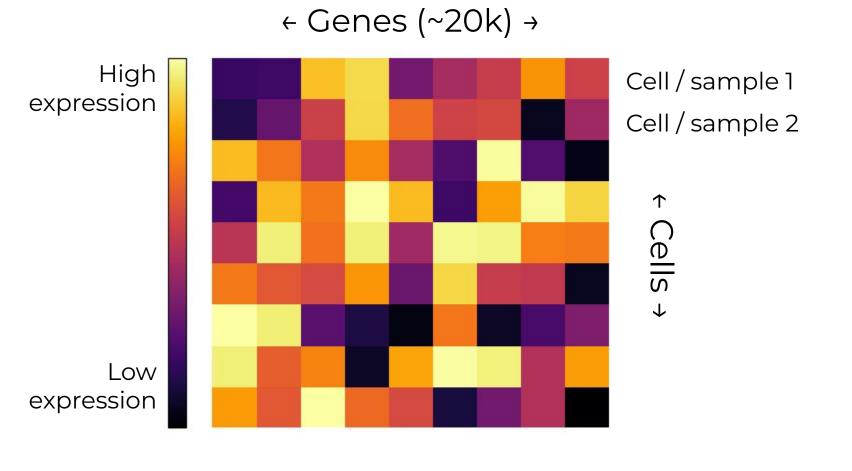
Contrastive Mixture of Posteriors for Counterfactual Inference, Data Integration and Fairness

Adam Foster¹ Árpi Vezér² Craig A Glastonbury²³ Páidí Creed² Sam Abujudeh² Aaron Sim²

¹Microsoft Research, Cambridge. Work completed at BenevolentAl and University of Oxford. ²BenevolentAl, London. ³Human Technopole, Milan, Italy.

Benevolent

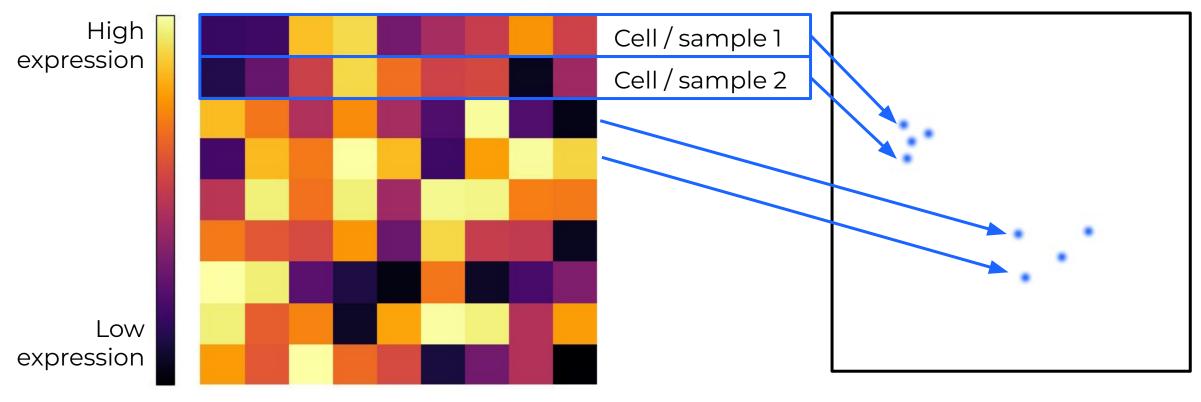
'Omics data



Particularly interested in **transcriptomics** and **single-cell RNA-seq**

Representation learning for 'omics data

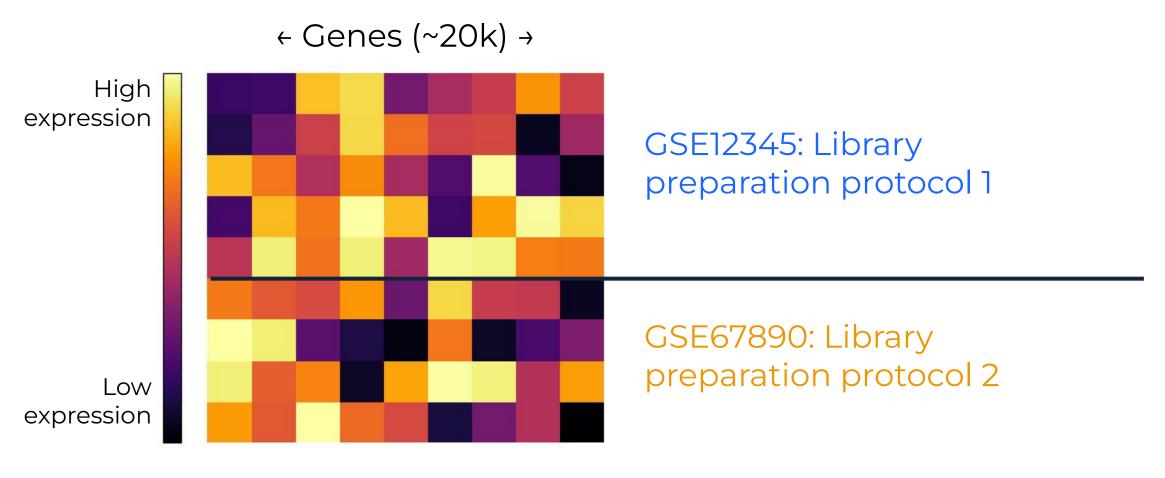
← Genes (~20k) →



Gene expression space

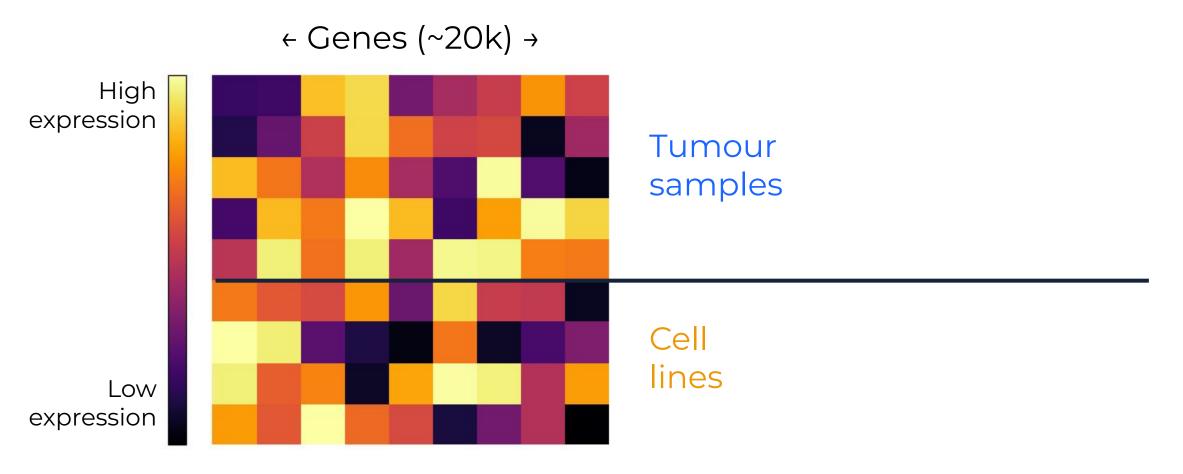
Latent space

Challenge 1: data integration & batch correction



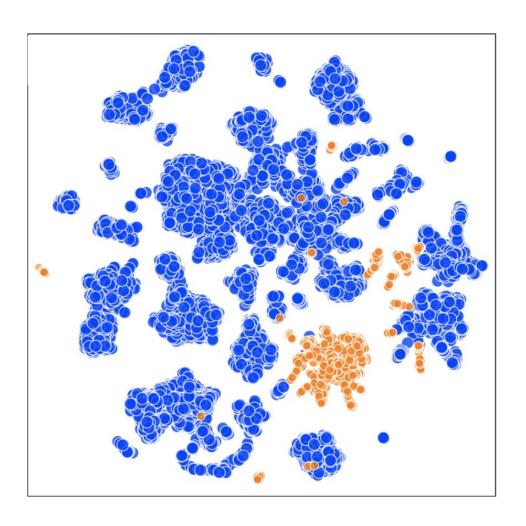
As in Korsunsky et al., 2019 Harmony paper

Challenge 1: data integration & batch correction



As in Warren et al., 2021 Celligner paper

Challenge 1: data integration & batch correction

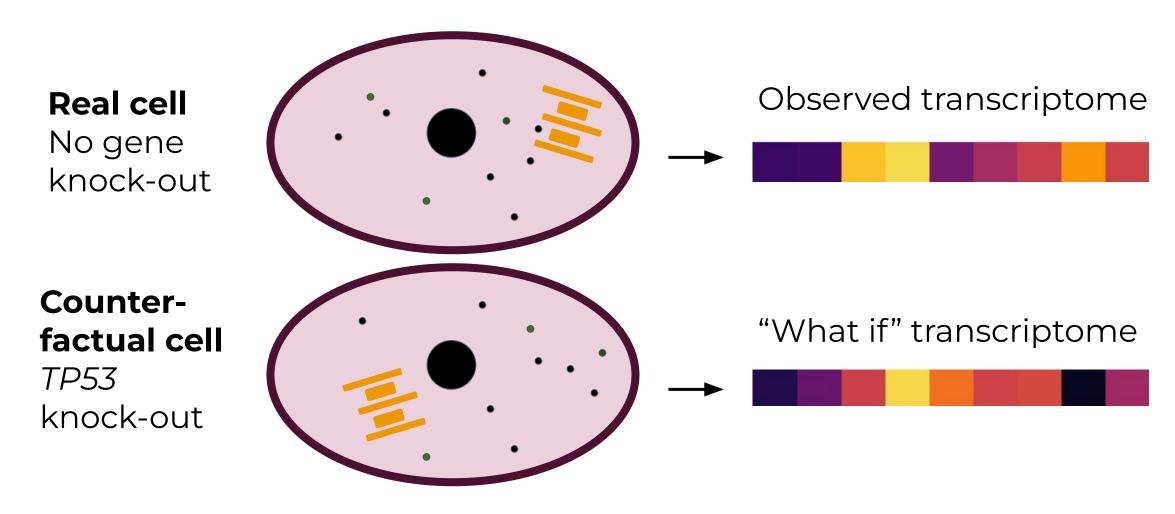


- Tumour samples (TCGA)
- Cell lines (CCLE)

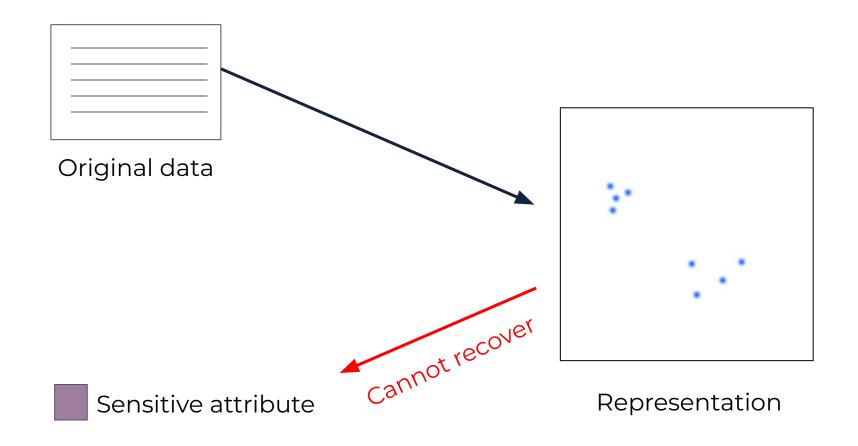
Datasets contain comparable cell populations, but there is unwanted global variation

Aim: subtract out the tumour / cell line global variation

Challenge 2: counterfactual predictions of effects of interventions

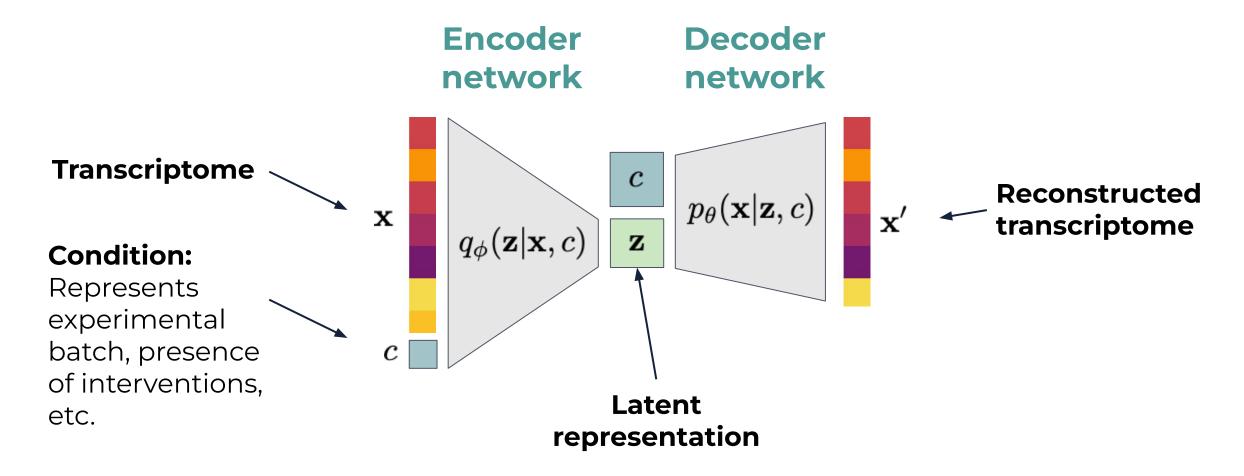


Challenge 3: learning fair representations

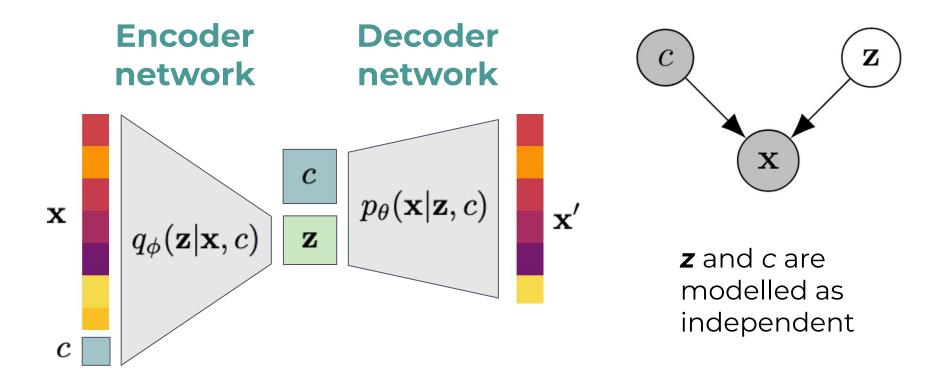


Conditional Variational AutoEncoders

Conditional Variational Autoencoder (CVAE)

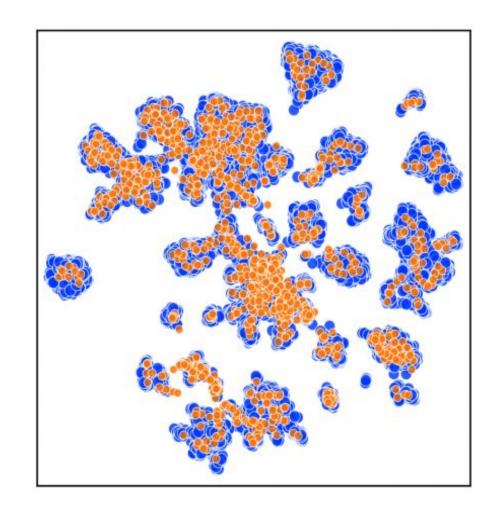


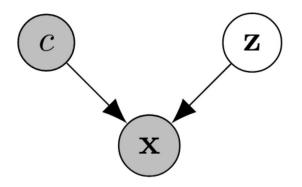
Conditional Variational Autoencoder (CVAE)



The importance of latent space alignment

c = 0c = 1

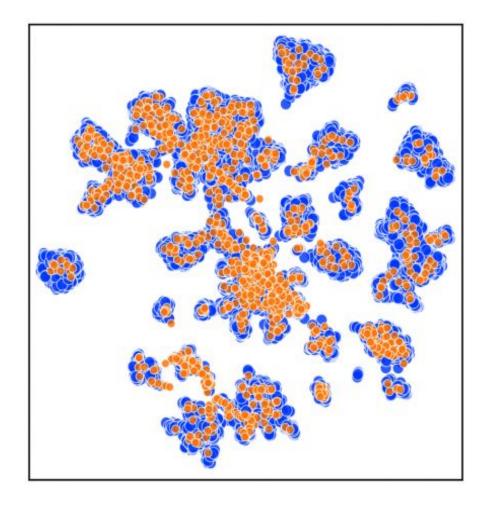




z and c are modelled as independent

z plot

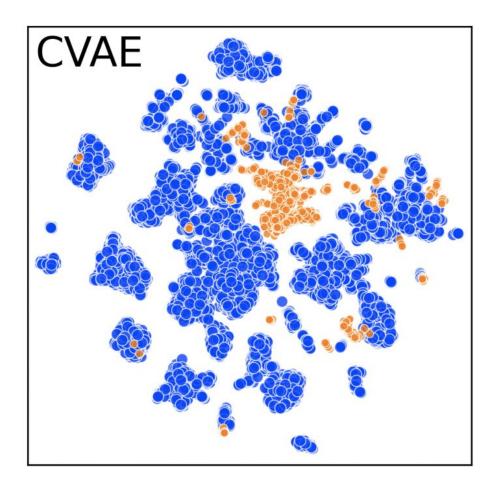
The importance of latent space alignment



This alignment directly gives us data integration in latent space

z plot

However...



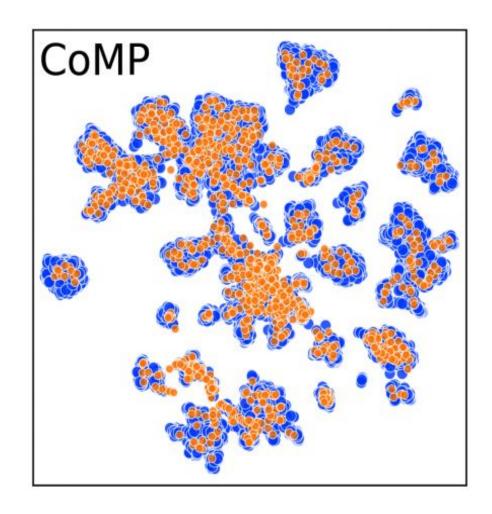
- The model is under no obligation to use the condition label c
- Training standard CVAE on Tumour / Cell lines does not lead to good alignment

Contrastive Mixture of Posteriors Misalignment Penalty

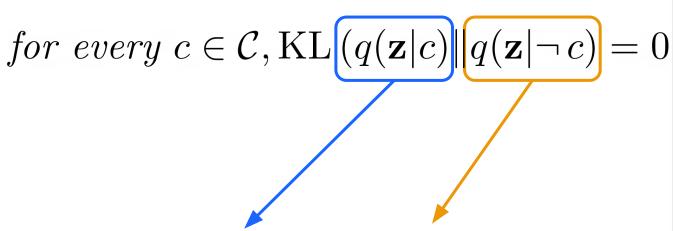
Aim

Train a CVAE such that

$$\mathbf{Z} \mathrel{\; \coprod \; } \mathcal{C}$$

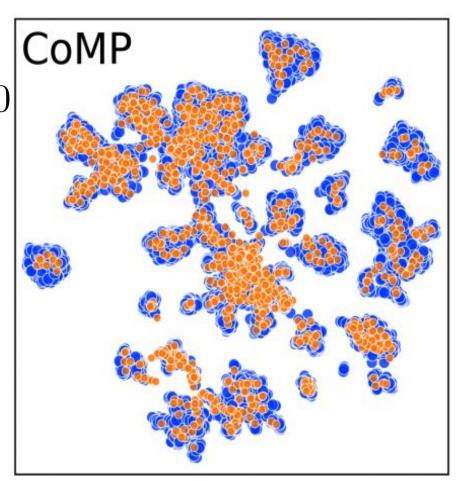


Aim (equivalent form)



Marginal distribution of **z** for cells in condition c

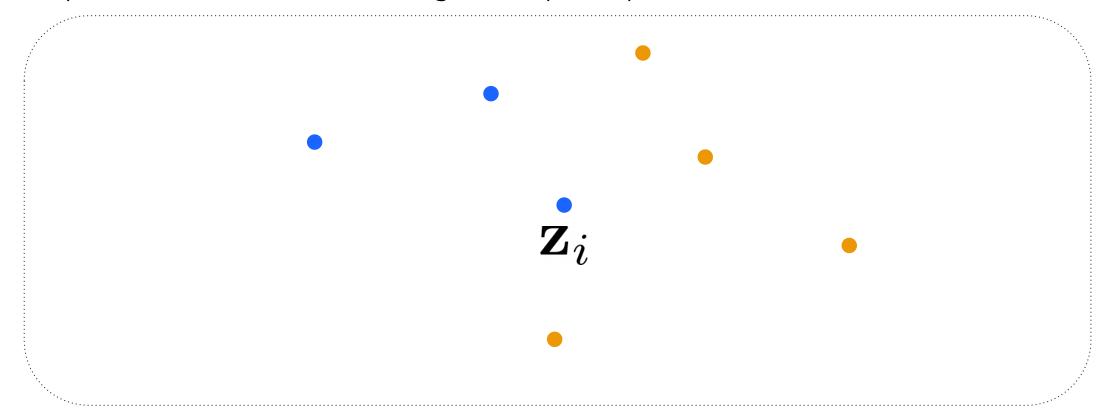
Marginal distribution of **z** for cells in any other condition



$$\text{CoMP penalty} = \frac{1}{B} \sum_{i=1}^{B} \log \left(\frac{1}{|I_{c_i}|} \sum_{j \in I_{c_i}} q(\mathbf{z}_i | \mathbf{x}_j, c_i) \right) - \log \left(\frac{1}{|I_{\neg c_i}|} \sum_{j \in I_{\neg c_i}} q(\mathbf{z}_i | \mathbf{x}_j, c_j) \right).$$

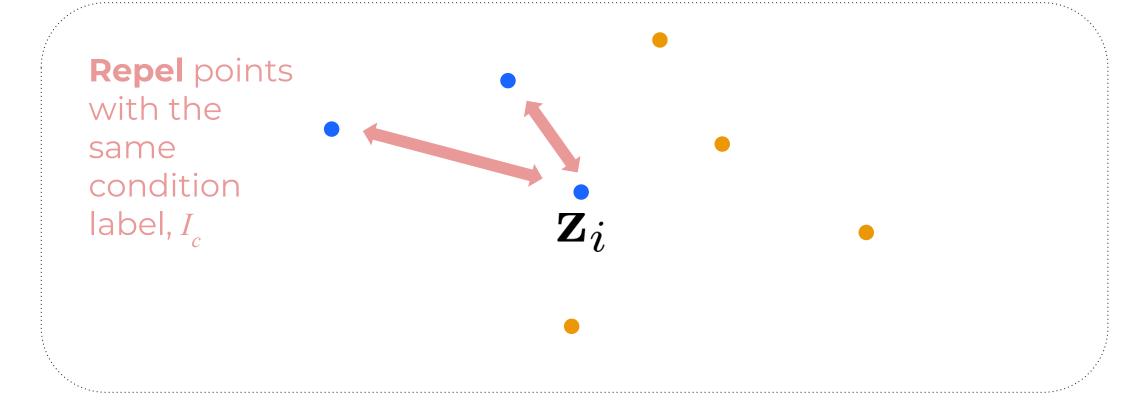
$$\text{CoMP penalty} = \frac{1}{B} \sum_{i=1}^{B} \log \left(\frac{1}{|I_{c_i}|} \sum_{j \in I_{c_i}} q(\mathbf{z}_i | \mathbf{x}_j, c_i) \right) - \log \left(\frac{1}{|I_{\neg c_i}|} \sum_{j \in I_{\neg c_i}} q(\mathbf{z}_i | \mathbf{x}_j, c_j) \right).$$

Representations of one training batch (size B)



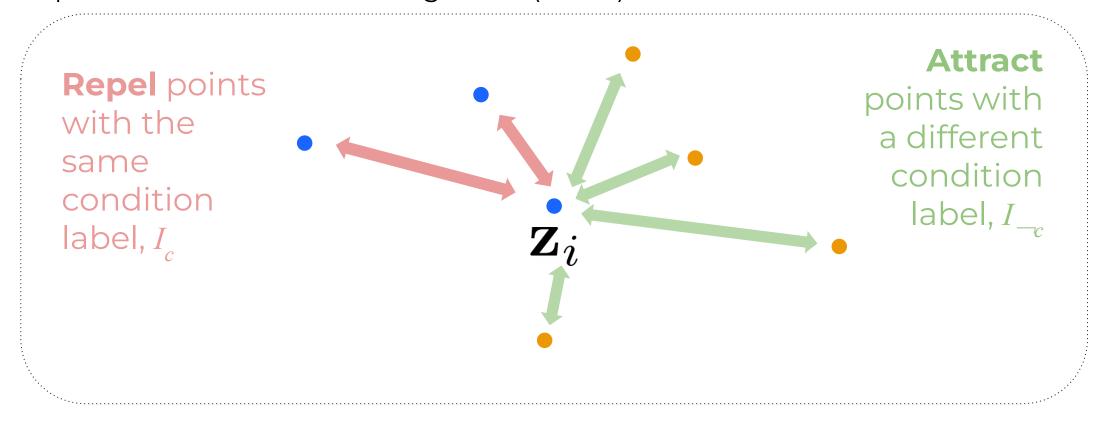
$$\text{CoMP penalty} = \frac{1}{B} \sum_{i=1}^{B} \left[\log \left(\frac{1}{|I_{c_i}|} \sum_{j \in I_{c_i}} q(\mathbf{z}_i | \mathbf{x}_j, c_i) \right) - \log \left(\frac{1}{|I_{\neg c_i}|} \sum_{j \in I_{\neg c_i}} q(\mathbf{z}_i | \mathbf{x}_j, c_j) \right) \right].$$

Representations of one training batch (size B)



$$\text{CoMP penalty} = \frac{1}{B} \sum_{i=1}^{B} \left[\log \left(\frac{1}{|I_{c_i}|} \sum_{j \in I_{c_i}} q(\mathbf{z}_i | \mathbf{x}_j, c_i) \right) - \left[\log \left(\frac{1}{|I_{\neg c_i}|} \sum_{j \in I_{\neg c_i}} q(\mathbf{z}_i | \mathbf{x}_j, c_j) \right) \right] \right]$$

Representations of one training batch (size B)



Theorem 1. The CoMP misalignment penalty satisfies

$$\mathbb{E}_{\prod_{i=1}^{B} p(\mathbf{x}_{i}, c_{i}) q(\mathbf{z}_{i} | \mathbf{x}_{i}, c_{i})} \left[\frac{1}{B} \sum_{i=1}^{B} \log \left(\frac{1}{|I_{c_{i}}|} \sum_{j \in I_{c_{i}}} q(\mathbf{z}_{i} | \mathbf{x}_{j}, c_{i}) \right) - \log \left(\frac{1}{|I_{\neg c_{i}}|} \sum_{j \in I_{\neg c_{i}}} q(\mathbf{z}_{i} | \mathbf{x}_{j}, c_{j}) \right) \right]$$

$$\geq \sum_{c \in \mathcal{C}} p(c) \operatorname{KL} \left[q(\mathbf{z} | c) || q(\mathbf{z} | \neg c) \right]$$

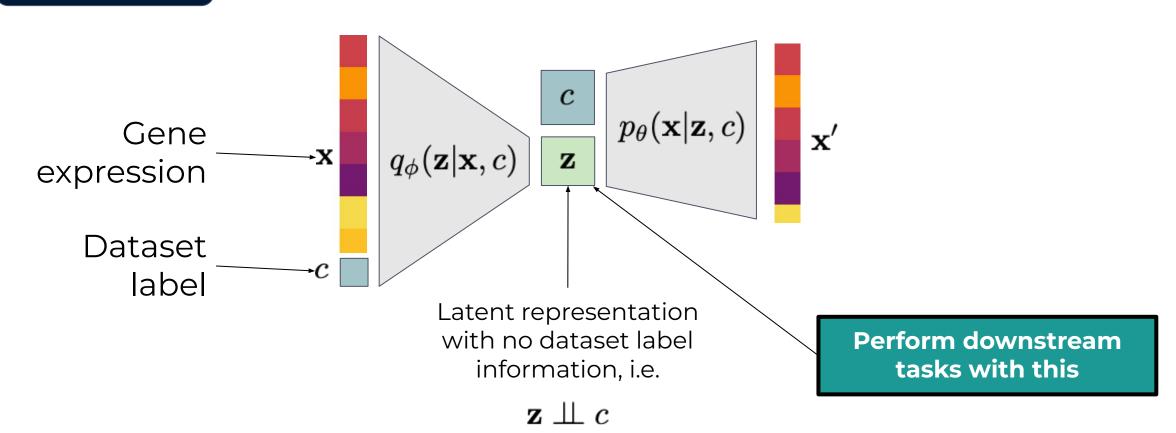
Our training objective to max is a penalised ELBO

ELBO –
$$\gamma$$
(CoMP penalty)

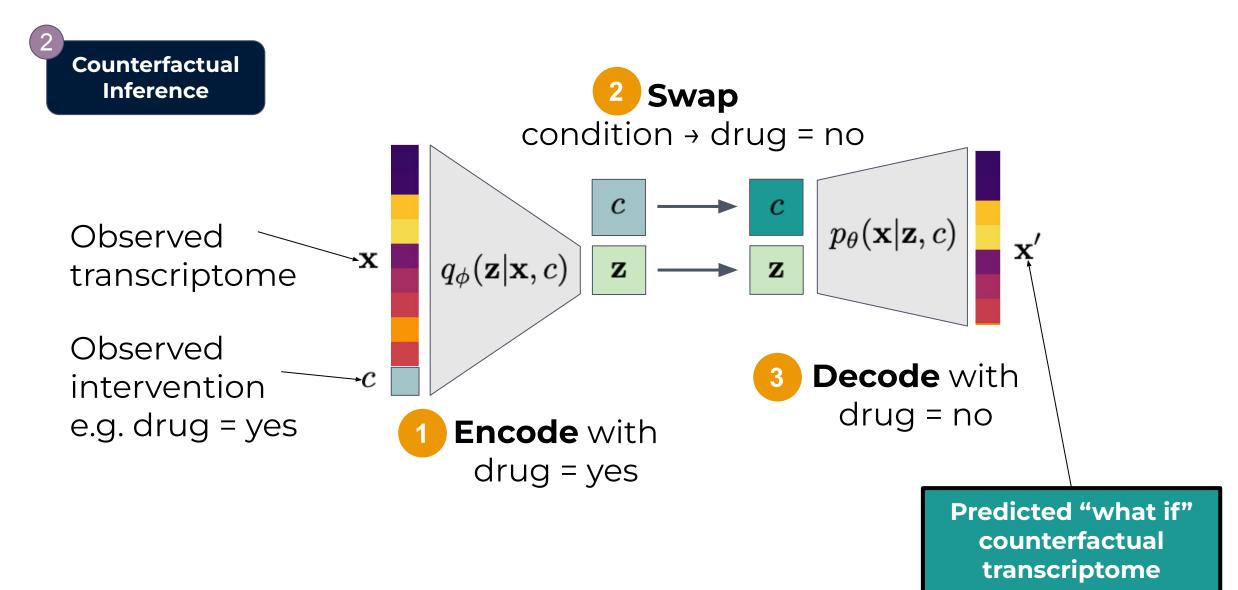
Applying CoMP

How do we use the CoMP CVAE model?

Data Integration



How do we use the CoMP CVAE model?



Theory

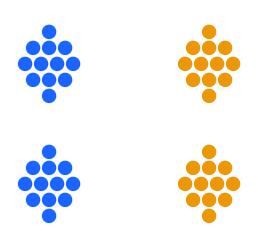
Question: Is $\mathbf{z} \perp \!\!\! \perp c$ sufficient to find counterfactuals, assuming the model is correct?

Question: Is $\mathbf{z} \perp \!\!\! \perp c$ sufficient to find counterfactuals, assuming the model is correct?

No.

Question: Is $\mathbf{z} \perp \!\!\! \perp c$ sufficient to find counterfactuals, assuming the model is correct?

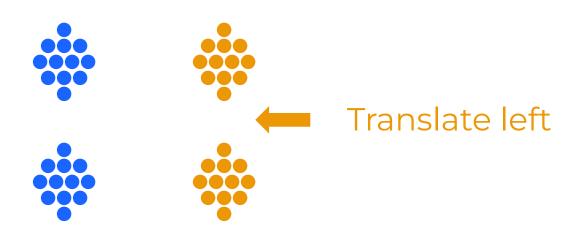
No.



Latent space with **z** and *c* not independent

Question: Is $\mathbf{z} \perp \!\!\! \perp c$ sufficient to find counterfactuals, assuming the model is correct?

No.



Latent space with **z** and *c* not independent

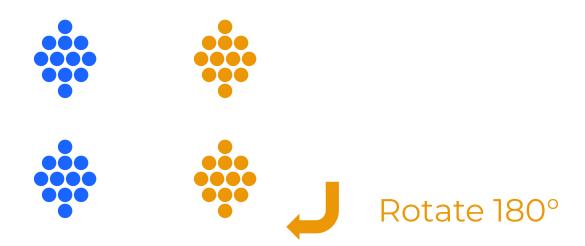
Question: Is $\mathbf{z} \perp \!\!\! \perp c$ sufficient to find counterfactuals, assuming the model is correct?

No.

Latent space with **z** and *c* independent

Question: Is $\mathbf{z} \perp \!\!\! \perp c$ sufficient to find counterfactuals, assuming the model is correct?

No.



Latent space with **z** and *c* not independent

Question: Is $\mathbf{z} \perp \!\!\! \perp c$ sufficient to find counterfactuals, assuming the model is correct?

No.

Latent space with **z** and *c* not independent

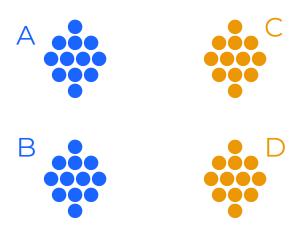
Question: Is $\mathbf{z} \perp \!\!\! \perp c$ sufficient to find counterfactuals, assuming the model is correct?

No.

Latent space with **z** and *c* independent

Question: Is $\mathbf{z} \perp \!\!\! \perp c$ sufficient to find counterfactuals, assuming the model is correct?

No.

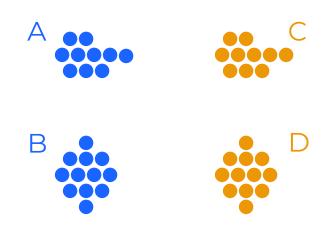


Latent space with **z** and *c* not independent

Question: Is $\mathbf{z} \perp \!\!\! \perp c$ sufficient to find counterfactuals, assuming the model is correct?

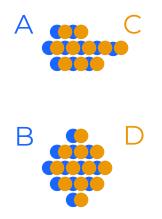
No. There is no way to tell which of these models is the right one.

Theorem (inexact statement): If we have a linear decoder and we assume that there is no exact, linear symmetry of the true latent distribution, then counterfactuals are identifiable.



Latent space with **z** and c not independent

Theorem (inexact statement): If we have a linear decoder and we assume that there is no exact, linear symmetry of the true latent distribution, then counterfactuals are identifiable.

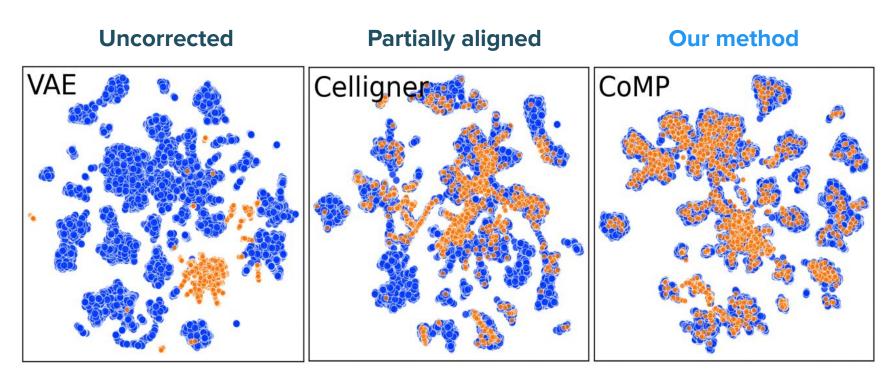


Unique latent space with **z** and *c* independent

In cell biology, exact symmetries are rarely seen in practice.

Results

1. Powerful data integration tool



- Tumour samples (TCGA Largest 15 cancer types)
- Cell lines (CCLE)

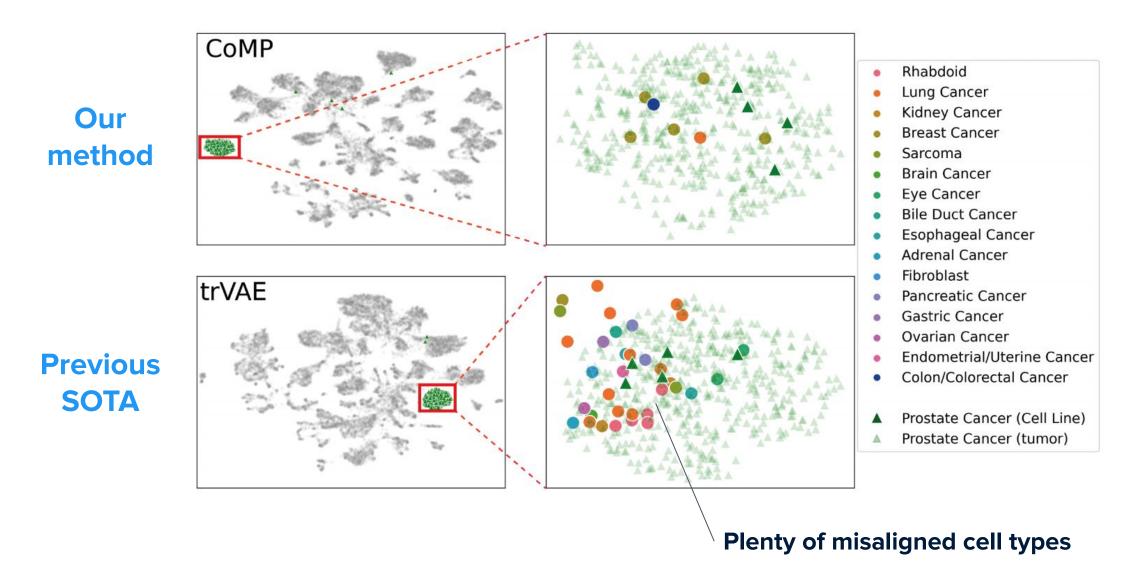
1. Powerful data integration tool

	s	kBET	$ ilde{ ilde{s}}$	m-kBET
VAE	0.658	0.974	0.803	0.581
CVAE	0.554	0.931	0.684	0.571
VFAE	0.168	0.258	0.198	0.188
trVAE	0.096	0.163	0.138	0.123
Celligner	0.082	0.525	0.568	0.226
CoMP	0.023	0.160	0.094	0.101

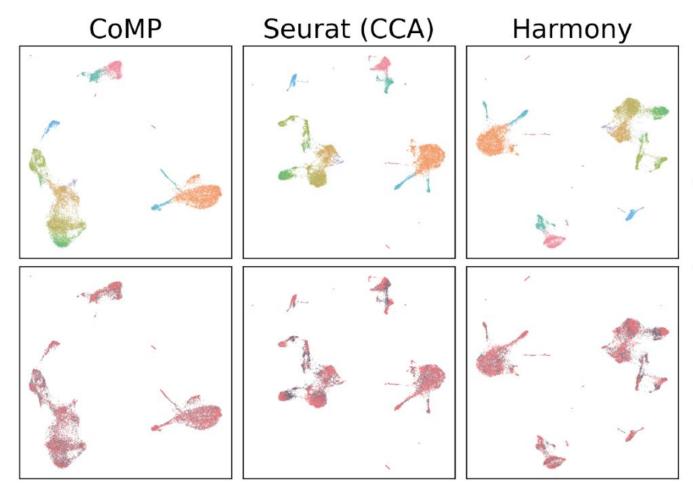
Best global alignment

Best alignment of correctly matching cell types

2. Fewer mis-alignments

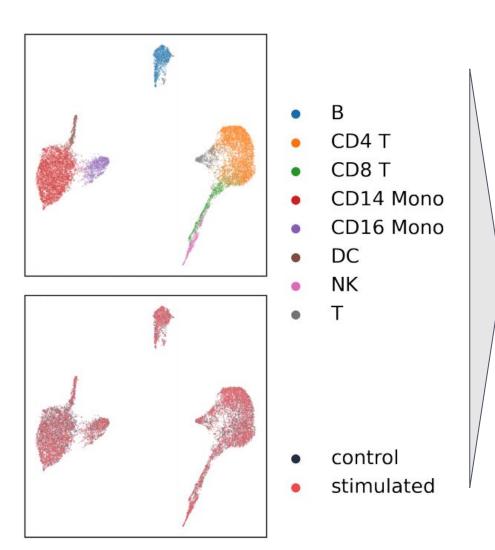


3. Better than Seurat, Harmony for scRNA-seq data integration tasks

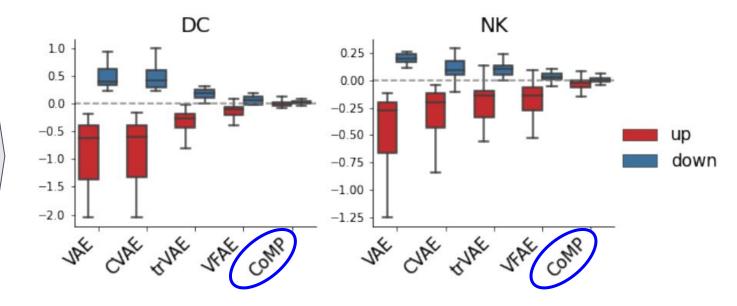


	s	kBET	$ ilde{s}$	m-kBET
Seurat CCA	0.0176	0.436	0.022	0.356
Harmony	0.0158	0.318	0.013	0.245
CoMP	0.0004	0.164	0.0011	0.120

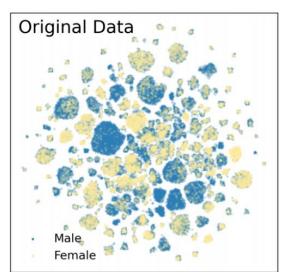
4. Counterfactual inference to predict effects of drug

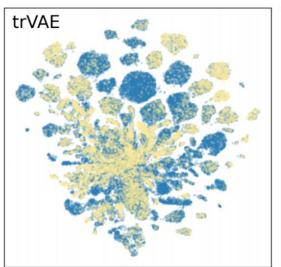


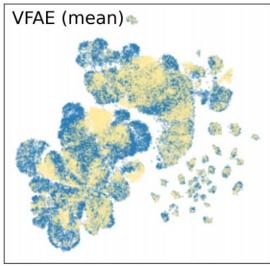
Counterfactual inference under IFN-beta stimulation

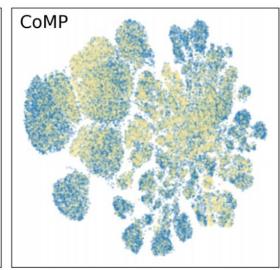


5. Fair but informative representations









	Gender Acc.	Income Acc.	$s_{k,c}$	$\mathrm{kBET}_{k,lpha}$
Original data	0.796	0.849	0.067	0.786
VAE	0.764	0.812	0.054	0.748
CVAE	0.778	0.819	0.054	0.724
VFAE (sampled) [18]	0.680	0.815	-	-
VFAE (mean)	0.789	0.805	0.046	0.571
trVAE	0.698	0.808	0.066	0.731
CoMP (ours)	0.679	0.805	0.011	0.451

Thank you!

Árpi Vezér Craig A Glastonbury Páidí Creed Sam Abujudeh Aaron Sim

Our code is available github.com/BenevolentAI/CoMP

Find the paper

"Contrastive Mixture of Posteriors"

Benevolent