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Optimization Based Design

e lterative process of generating the design and evaluation.
e For problems like protein design, the wet lab evaluations can take months.
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Optimization Based Design

e lterative process of generating the design and evaluation.
e For problems like protein design, the wet lab evaluations can take months.
e How can we leverage existing data?
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Offline Model-Based Optimization (MBO)

No Additional Interactions
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e Offline MBO: given a dataset D = { (X0, %0), (X1, ¥1),--- (XN, YN )}
maximize f (X) without new function evaluations.
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e Offline MBO: given a dataset D = {(Xq, ¥0), (X1, Y1),
maximize f (X) without new function evaluations.
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What Makes Offline MBO Uniquely Challenging?

We can only estimate the objective
function accurately within distribution.

However, optimization inevitably requires
going to out-of-distribution regions.

Successful offline MBO algorithms find
high objective points at the edge of data
distribution.

f(x)
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Why Is Offline MBO Tractable?

e \What prevents offline MBO from simply copying over the best design in the dataset?
e Many problems have compositionality:
o The dataset contains optimal choices for all component, but not in combination.
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Why Is Offline MBO Tractable?

e \What prevents offline MBO from simply copying over the best design in the dataset?
e Many problems have compositionality:

o The dataset contains optimal choices for all component, but not in combination.
e Good algorithms learn to combine the optimal components.

Dataset and MBO Found Design Histogram of Objective Values
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Offline MBO Methods We Benchmark

e Search on learned objective
o Gradient descent, REINFORCE, CMA-ES
e Bayesian optimization
o BO-gEl
e Generative modeling
o CbAS, Autofocused CbAS, MINs
e Conservative objectives
o COMs



Benchmark Tasks for Offline MBO

e Realistic: represent important applications
e Captures the core challenges of offline MBO

o High dimensionality, sensitive objectives and heavy-tailed data
e Diverse in problems and domains
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Benchmark Tasks for Offline MBO

1 of 10 output labels
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Benchmark Tasks for Offline MBO

1 of 10 output labels
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Dataset Name | Size | Dimensions | Categories | Type Oracle
TF Bind 8 32898 8 4 Discrete Exact
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ChEMBL 1093 31 591 Discrete | Random Forest
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e 8 Tasks from Biology, Chemistry, Robotics and Deep Learning

e Tasks with High-Dimensional, Discrete and Continuous input space
e Sensitive and Non-Linear Objective Functions
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Benchmark Tasks for Offline MBO

1 of 10 output labels
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Performance Analysis

|| TFBind8 | TFBind10 | ChEMBL | NAS | Superconductor | AntMorph. | DKitty Morph. | Hopper
D (best) 0.439 0.467 0.605 0.436 0.400 0.565 0.884 1.0
Auto. CbAS 0910+ 0.044 | 0.630 % 0.045 0.249 £ 0.305 0.506 + 0.074 0.421 £ 0.045 0.882 +£0.045 0.906 % 0.006 0.137 £ 0.005
CbAS 0.927 £ 0.051 0.651 £0.060 | 0.473 +0.264 0.683 + 0.079 0.503 £0.069 | 0.876 £0.031 0.892 + 0.008 0.141 £0.012
BO-gEI 0.798 £0.083 | 0.652+0.038 | 0.596 +£0.226 1.079 = 0.059 0.402 +0.034 | 0.819 +£0.000 0.896 % 0.000 0.550+0.118
CMA-ES 0.953+0.022 | 0.670+0.023 0.085 +0.225 0.985 +0.079 0.465 + 0.024 1.214 +£0.732 0.724 + 0.001 0.604 +0.215
Grad. 0.977+£0.025 | 0.657+0.039 | 0.307 £0.308 0.433 + 0.000 0.518 £0.024 | 0.293 £0.023 0.874 £ 0.022 1.035 £ 0.482
Grad. Min 0.984 +0.012 0.649 + 0.032 0.653 +£0.024 0.433 + 0.000 0.506 £ 0.009 0.479 + 0.064 0.889 +0.011 1.391 £ 0.589
Grad. Mean 0.986+0.012 | 0.645+0.018 | 0.652 +0.005 0.433 + 0.000 0.499 +0.017 | 0.445 +0.080 0.892 +0.011 1.586 + 0.454
REINFORCE 0.948 +£0.028 | 0.663+0.034 | 0.164 +0.285 -1.895 + 0.000 0.481 +0.013 0.266 + 0.032 0.562 +0.196 | -0.020 = 0.067
MINs 0.905+0.052 | 0.616+0.021 0.000 £+ 0.000 0.717 £ 0.046 0.499 £ 0.017 | 0.445+0.080 0.892 +0.011 0.424 £ 0.166
COMs 0973+0.016 | 0.730+0.136 | 0.633 +0.000 0.459 +0.139 0.439 +£0.033 0.944 +0.016 0.949 + 0.015 2.056 £0.314

Gradient-based MBO is surprisingly effective
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Performance Analysis

|| TFBind8 | TFBind10 | ChEMBL | NAS | Superconductor | AntMorph. | DKitty Morph. | Hopper
D (best) 0.439 0.467 0.605 0.436 0.400 0.565 0.884 1.0
Auto. CbAS 0910+ 0.044 | 0.630 % 0.045 0.249 £ 0.305 0.506 + 0.074 0.421 £ 0.045 0.882 +£0.045 0.906 % 0.006 0.137 £ 0.005
CbAS 0.927 £ 0.051 0.651 £0.060 | 0.473 +0.264 0.683 + 0.079 0.503 £0.069 | 0.876 £0.031 0.892 + 0.008 0.141 £0.012
BO-gEI 0.798 £0.083 | 0.652+0.038 | 0.596 +£0.226 1.079 = 0.059 0.402 +0.034 | 0.819 +£0.000 0.896 % 0.000 0.550+0.118
CMA-ES 0.953+0.022 | 0.670+0.023 0.085 +0.225 0.985 +0.079 0.465 + 0.024 1.214 +£0.732 0.724 + 0.001 0.604 +0.215
Grad. 0.977+£0.025 | 0.657+0.039 | 0.307 £0.308 0.433 + 0.000 0.518 £0.024 | 0.293 £0.023 0.874 £ 0.022 1.035 £ 0.482
Grad. Min 0.984 +0.012 0.649 + 0.032 0.653 +£0.024 0.433 + 0.000 0.506 £ 0.009 0.479 + 0.064 0.889 +0.011 1.391 £ 0.589
Grad. Mean 0.986+0.012 | 0.645+0.018 | 0.652 +0.005 0.433 + 0.000 0.499 +0.017 | 0.445 +0.080 0.892 +0.011 1.586 + 0.454
REINFORCE 0.948 +£0.028 | 0.663+0.034 | 0.164 +0.285 -1.895 + 0.000 0.481 +0.013 0.266 + 0.032 0.562 +0.196 | -0.020 = 0.067
MINs 0.905+0.052 | 0.616+0.021 0.000 £+ 0.000 0.717 £ 0.046 0.499 £ 0.017 | 0.445+0.080 0.892 +0.011 0.424 £ 0.166
COMs 0973+0.016 | 0.730+0.136 | 0.633 +0.000 0.459 +0.139 0.439 £ 0.033 0.944 +0.016 0.949 + 0.015 2.056 £0.314

Gradient-based MBO is surprisingly effective

No single method works in all domains (yet)

Nearly all methods fail in high-dimensional tasks



Performance Analysis: Aggregated
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e Gradient-based MBO is surprisingly effective
e No single method works in all domains (yet)

e Nearly all methods fail in high-dimensional tasks



Thank you and looking forward to your
algorithms on our benchmark!




