## Principled Knowledge Extrapolation with GANs

Ruili Feng<sup>1</sup>, Jie Xiao<sup>1</sup>, Kecheng Zheng<sup>1</sup>, Deli Zhao<sup>2</sup>, Jingren Zhou<sup>3</sup>, Qibin Sun<sup>1</sup>, Zheng-Jun Zha<sup>1</sup>

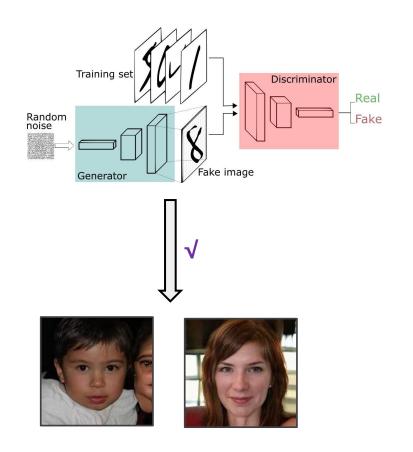
<sup>1</sup>University of Science and Technology of China, Hefei, China

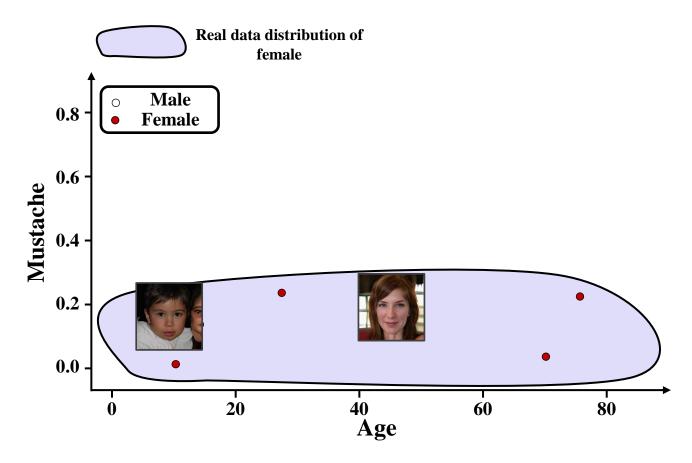
<sup>2</sup>Ant Research, Hangzhou, China

<sup>3</sup>Alibaba Group, Hangzhou, China

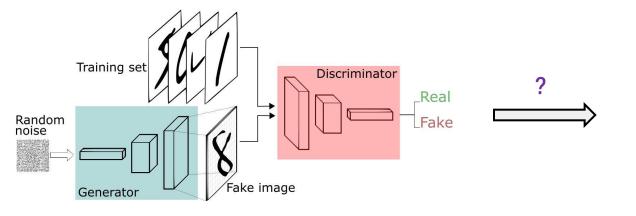
ICML 2022, held in Baltimore, Maryland USA

 Generative Networks can well generate high fidelity examples whose distribution is from that of the given training data.





- Current methods fail to generate high fidelity counterfactual results;
- Real data distribution excludes the cases of children or female in mustache.

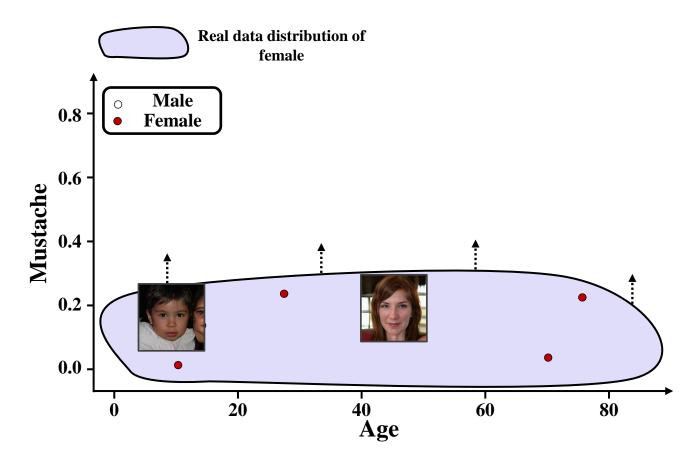




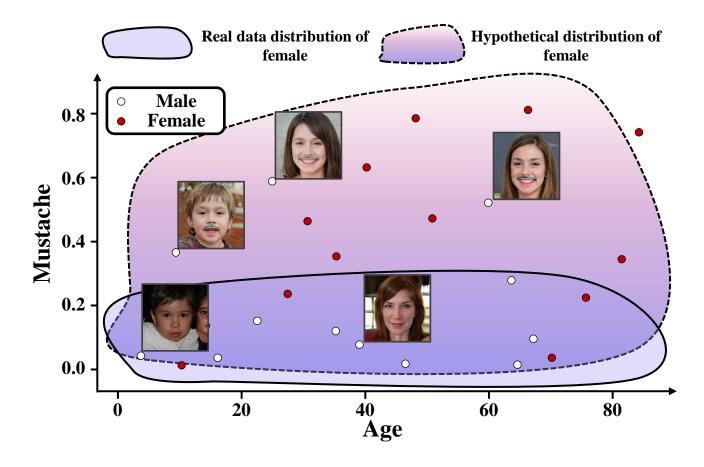




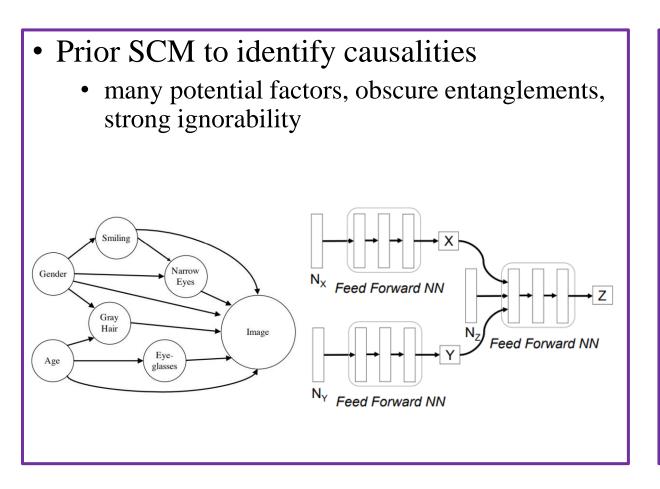
 Counterfactual Synthesis desirably extrapolates to those <u>counterfactual</u> cases, but keeps the other aspects unchanged.

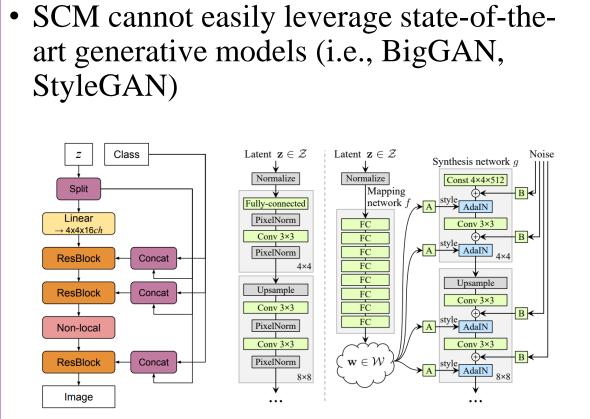


 Counterfactual Synthesis desirably extrapolates to those <u>counterfactual</u> cases, but keeps the other aspects unchanged.



## Structural Causal Model for Counterfactual Synthesis





# Principled GAN Knowledge Extrapolation

#### • Given:

- data domain: X
- data distribution:  $\mathbb{P}_{\chi}$
- Assume:
  - pretrained generator:  $G_{\theta}x: \mathcal{Z} \to \mathcal{X}$
  - posterior distribution for a knowledge  $l: \mathbb{P}_l(x) = \mathbb{P}(l|x)$
- Task: infer  $\mathbb{P}_H$ , with only difference from  $\mathbb{P}_{\mathcal{X}}$  in knowledge l

## Principled GAN Knowledge Extrapolation

• Solution: by adversarial training:

$$\min_{G_{\theta}} \max_{D_{\phi}} \mathbb{E}_{x \sim \mathbb{P}_{H}} \left[ \log D_{\phi}(x) \right] + \mathbb{E}_{x \sim \mathbb{P}_{G_{\theta}}} \left[ \log \left( 1 - D_{\phi}(x) \right) \right]$$
 (1)

- Goodfellow et al. have shown that Eq. (1) converges to  $\mathbb{P}_{G_{\theta}} = \mathbb{P}_{H}!$
- Problem: we do not have samples from  $\mathbb{P}_H$ , how to train discriminator?
- If we know the optimal discriminator, then we only need to solve  $\min_{G_{\theta}} \mathbb{E}_{x \sim \mathbb{P}_{G_{\theta}}} [\log(1 D_{\phi^*}(x))]$  (2)

which do not need samples from  $\mathbb{P}_H$ !

# Indiscernibility Space

#### Indistinguishable assumption

 $\mathbb{P}_{\mathcal{X}}$  is indistinguishable from  $\mathbb{P}_{H}$  except for the altered knowledge l

#### Definition

the indiscernibility space  $\mathcal{I}^l$  for knowledge l:  $\mathcal{I}^l = \{\theta \colon \mathbb{P}_{G_{\theta}} \text{ is indistinguishable from } \mathbb{P}_H \text{ except for knowledge } l\}$ 

• By Indiscernibility Space, solving (1) is equivalent to solving

$$\min_{G_{\theta} \in \mathcal{I}^{l}} \max_{D_{\phi}} \mathbb{E}_{x \sim \mathbb{P}_{H}} \left[ \log D_{\phi}(x) \right] + \mathbb{E}_{x \sim \mathbb{P}_{G_{\theta}}} \left[ \log \left( 1 - D_{\phi}(x) \right) \right]$$

## Optimal Discriminator

**Theorem.** If  $G_{\theta} \in \mathcal{I}^l$ , then the optimal discriminator of problem  $\max_{D_{\phi}} V(D_{\phi}, G_{\theta})$  is  $D_{\phi^*}(x) = \mathbb{P}_l(x)$  for some probability distribution

 $\mathbb{P}_l$  of knowledge l.

Problem (2) is equivalent to

$$\min_{\theta \in \mathcal{I}^{l}} \bar{\mathbb{E}}_{x \sim \mathbb{P}_{G_{\theta}}} \left[ \log \mathbb{P}_{\bar{l}}(x) \right] = -H(\mathbb{P}_{G_{\theta}}, \mathbb{P}_{\bar{l}}), \tag{3}$$

where  $\mathbb{P}_{\bar{l}} = 1 - \mathbb{P}_{l}$ , H is the cross entropy function.

#### Solution to Generator

**Algorithm:** repeatedly update  $\theta$  as

$$\theta^{k+1} = \epsilon \operatorname{Tr}\left(\nabla_{\theta} H\left(\mathbb{P}_{G_{\theta^k}}, \mathbb{P}_{\bar{l}}\right), \lambda\right),$$
 where 
$$\operatorname{Tr}(v, \lambda) = \begin{cases} v_i = 0, & \text{if } |\nabla_{\theta} H_i| \leq \lambda, \\ v_i = 1, & \text{if } \nabla_{\theta} H_i < 0, 0 \leq \lambda < |\nabla_{\theta} H_i|, \\ v_i = -1, & \text{if } \nabla_{\theta} H_i > 0, 0 \leq \lambda < |\nabla_{\theta} H_i|, \end{cases}$$

and  $\theta^0 = \theta$ , then  $G_{\theta^K}$  generates a distribution that approximates the counterfactual hypothesis  $\mathbb{P}_H$ !

## Principal Knowledge Descent

• **Theorem.** Let  $\Delta$  be the descent value of the objective (3) by implementing Algorithm 1, and  $\delta$  be the change of the other knowledge, i.e.,

$$\Delta = H(\mathbb{P}_{G_{\theta K}}, \mathbb{P}_{\bar{l}}) - H(\mathbb{P}_{G_{\theta}}, \mathbb{P}_{\bar{l}}),$$

$$\delta = \mathbb{E}_{x \sim \mathbb{P}_{\mathcal{X}}} \left[ \left| f_{G_{\theta K}}^{r}(x) - f_{\mathcal{X}}^{r}(x) \right| \right],$$

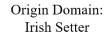
where 
$$K$$
 is the iteration turns. Assume that  $\mathbb{P}_{G_{\theta}X} = \mathbb{P}_{X}$ ,  $\varepsilon$  is small enough, and  $L = \sup_{\|\theta - \theta^{X}\|_{\infty} < K\varepsilon} \|\nabla_{\theta} f_{G_{\theta}}^{r}\|_{\infty}$ . There is  $\lambda_{max} < 0$  such that  $\forall \lambda \in (0, \lambda_{max})$ , we have  $\Delta > 0$  and

 $(0, \lambda_{max})$ , we have  $\Delta > 0$  and

$$\frac{\Delta}{\delta} \ge \frac{\lambda}{L} + o(1).$$

## Findings and Results

#### • Counterfactual Synthesis



**CF: Polar Bear** Nose & Color



Origin Domain: Goldfinch

**CF:** Cheetah Spot



Origin Domain: Husky

**CF: Ursus Arctos Fur** 





Origin Domain: Junco

**CF:** Guinea Pig Fur & Color



Origin Domain: Orange

**CF: Strawberry** Surface



Origin Domain: Komodo Dragon

CF: Green **Lizard Color** 









- Data domain: ImageNet
- Pretrained generator: BigGAN256
- Posterior distribution: ResNet50

## Findings and Results

• Counterfactual Synthesis



Domain: Female Counterfact: Mustache



Domain: Child Counterfact: Mustache



Domain: Child Counterfact: Gray Hair



Domain: Male Counterfact: Lipstick

- Data domain: FFHQ
- Pretrained generator: StyleGAN2
- Posterior distribution: ResNet50 trained on CelebA-HQ