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Introduction and Overview
In this work, we consider the following generalization of the kernelized bandit problem.

Algorithms try to optimize risk-averse metrics (instead of the mean) such as the

Mean-Variance or CVaR of the outputs of known function (or probability kernel).

Let y be an output random variable at a point x, F the CDF of the output y. Then

CVaR is defined as E
[
y | y ≤ F−1(α)

]
, where α ∈ (0, 1) is a parameter of the metric.

However, most existing works on optimization of such risk-averse metrics have restrictions

(e.g., they need the environment random variable).

In this work, we address the issues by modeling the output distributions using kernel mean

embeddings (KME) and a probability kernel.

Then, we propose UCB-type and phased-elimination based algorithms for CVaR and MV,

and prove a near optimality.
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Comparison with Existing Work

In most existing works on kernelized bandit problems for risk-aversion, they model the

output y by y = f(x,W ), where x is an input variable, and W is a RV called the

environment RV that accounts for randomness of the output y.

However, usually, algorithms based on this model have some limitations or shortcomings.

Recently, Nguyen et al. (2021) proposed kernelized bandit algorithms for CVaR, they

assumed that algorithms can control/select W in optimization procedure, which is a

restrictive assumption for complex environments (such as the real world).

Moreover, since the regret upper bound is given using the maximum information gain of a

function w.r.t. (x,W ), their algorithms can have larger regret upper bounds due to

possible high dimensionality of W even if that of x is moderate.
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Notation and Brief Review of Kernel Mean Embeddings

k : X × X → R and l : Y × Y → R be kernels on sets X and Y with Y ⊂ R.

Let φk : X → Hk(X ) be the feature map to the RKHS Hk(X ) define φl similarly.

Under mild conditions on the kernel l, ∃!µl :M(Y)→ Hl(Y) s.t.

〈µl(ρ), f〉l = Ey∼ρ [f(y)] , ∀f ∈ Hl(Y).

Here 〈·, ·〉l denotes the inner product in Hl(Y) and M(Y) denotes the space of
probability distributions on Y.

The map µl is called Kernel Mean Embedding (KME).
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Problem Formulation

For unknown map ρ : X →M(Y) and a given time interval T , an agent selects an arm
xt ∈ X based on the observation history x1, y1, . . . , xt−1, yt−1 for each round
t = 1, . . . , T .

The environment reveals a noisy output yt with yt | Ft−1 ∼ ρ(xt), where Ft−1 denotes
the σ-algebra generated by x1, y1, . . . , xt.

The performance of an algorithm is evaluated by the cumulative CVaR regret defined as

RCVaR,α(T ) =

T∑
t=1

(
sup
x∈X

CVaRα(ρ(x))− CVaRα(ρ(xt))

)
.
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Model Assumption: Probability Kernel Embedding Approach

Without smoothness assumption one cannot hope for an algorithm with a sublinear regret
guarantee.

In the commutative diagram (i.e., Θ ◦ φk = µl ◦ ρ) below, the map Θ controls the
smoothness of ρ.

In this paper, we assume that Θ is a bounded linear operator between RKHSs.

If l is the linear kernel, this model assumption is identical to the conventional model
assumption in the kernelized bandit problem.

This assumption is closely related to conditional mean embeddings, but we consider a
more suitable setting for the bandit problem (e.g., initially, a probability kernel ρ is given).

X ρ−−−−→ M(Y)

feature map φk

y KME µl

y
Hk(X )

Θ−−−−→ Hl(Y)
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A UCB-type Algorithm
For observation history (x1, y1), . . . , (xt, yt) up to time step t, we define ĈVaRα,t(x) by

sup
ν∈Y

{
ν − 1

α
(ψν(y1), . . . , ψν(yt))(k(x1:t, x1:t) + λ1t)

−1k(x1:t, x)

}
, (1)

where k(x1:t, x1:t) = (k(xi, xj))1≤i,j≤t, k(x1:t, x)T = (k(xi, x))1≤i≤t, and
ψν(y) = max{ν − y, 0}. Assuming |Y| <∞, with probability at least 1− δ, we have∣∣∣CVaRα(ρ(x))− ĈVaRα,t(x)

∣∣∣ ≤ U

α
β

(CV)
k,t (δ)σk,t(x), (2)

for all x and t, where β
(CV)
k,t (δ) = O(

√
(γk,t + log(|Y|/δ))) and γk,t is the maximum

information gain.

Theorem

We can consider a UCB-type algorithm for CVaR, and with probability at least 1− δ its

cumulative regret is upper bounded by O( 1
αβ

(CV)
k,t (δ)

√
Tγk,T ).
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Rough Statement for a Nearly Optimal Algorithm

We can consider a phased algorithm (as in the conventional setting) for CVaR and provide a
rough statement of the results.

Theorem

Assume that X and Y are finite. Then, with probability at least 1− δ, the cumulative

regret of the phased algorithm is upper bounded by Õ( 1
α

√
log(|X ||Y|/δ)

√
Tγk,T ).

Moreover, if k is a Matérn kernel, then the phased algorithm is nearly optimal, i.e., up to

a poly-logarithmic factor of T , the upper bound matches an algorithm-independent lower

bound of the problem.
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Experiments in Synthetic Environments

We empirically compare the UCB-type algorithm for CVaR and IGP-UCB in the case
when X is a discretization of [0, 1]3.

We randomly generate lognormal environments LN (µm(x), σm(x)) by randomly
generated functions µm(x), σm(x) for m = 1, . . . , 10.

As the theoretical result indicates the proposed method incurs sublinear regret for all α
and outperforms the baseline algorithm in many cases.
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Figure: Cumulative CVaR Regret for LogNormal Environments
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