

Adaptive Gaussian Process Change Point Detection

Contact: Edoardo Caldarelli, ecaldarelli@iri.upc.edu

Edoardo Caldarelli, Philippe Wenk, Stefan Bauer, and Andreas Krause

Find changes in the regime of time series

Business inventories (USA)

Find changes in the regime of time series

Japan's GDP

Business inventories (USA)

Find changes in the regime of time series

Japan's GDP

 Changes in the kernel and mean function of a Gaussian process

Business inventories (USA)

 Find changes in the regime of time series

Japan's GDP

Mean

Series value 40 Point index 20 60

Periodicity

 Changes in the kernel and mean function of a Gaussian process

Train GP on the whole window, predict on subwindow:

$$p(\mathbf{y}_{s} | H_{0}) = p(\mathbf{y}_{s} | \mathbf{t}_{s}, \boldsymbol{\phi}_{H_{0}}, \sigma_{H_{0}}^{2})$$

Train GP on the whole window, predict on subwindow:

$$p(\mathbf{y}_{s} | H_{0}) = p(\mathbf{y}_{s} | \mathbf{t}_{s}, \boldsymbol{\phi}_{H_{0}}, \sigma_{H_{0}}^{2})$$

Train a GP on the subwindow, predict on subwindow:

$$p(\mathbf{y}_s | \mathbf{t}_s, \boldsymbol{\phi}_{new}, \sigma_{new}^2)$$

Train GP on the whole window, predict on subwindow:

$$p(\mathbf{y}_{s} | H_{0}) = p(\mathbf{y}_{s} | \mathbf{t}_{s}, \boldsymbol{\phi}_{H_{0}}, \sigma_{H_{0}}^{2})$$

Train a GP on the subwindow, predict on subwindow:

$$p(\mathbf{y}_s | \mathbf{t}_s, \boldsymbol{\phi}_{new}, \sigma_{new}^2)$$

Null hypothesis:
$$p(\mathbf{y}_s | H_0) = p(\mathbf{y}_s | \mathbf{t}_s, \boldsymbol{\phi}_{H_0}, \sigma_{H_0}^2)$$

Surrogate alternative hypothesis:
$$p(\mathbf{y}_s | H_1) = \frac{p(\mathbf{y}_s | \mathbf{t}_s, \boldsymbol{\phi}_{H_0}, \sigma_{H_0}^2) p(\mathbf{y}_s | \mathbf{t}_s, \boldsymbol{\phi}_{new}, \sigma_{new}^2)}{Z_1}$$

Train GP on the whole window, predict on subwindow:

$$p(\mathbf{y}_{s} | H_{0}) = p(\mathbf{y}_{s} | \mathbf{t}_{s}, \boldsymbol{\phi}_{H_{0}}, \sigma_{H_{0}}^{2})$$

Train a GP on the subwindow, predict on subwindow:

$$p(\mathbf{y}_{s} | \mathbf{t}_{s}, \boldsymbol{\phi}_{new}, \sigma_{new}^{2})$$

Null hypothesis:
$$p(\mathbf{y}_s | H_0) = p(\mathbf{y}_s | \mathbf{t}_s, \boldsymbol{\phi}_{H_0}, \sigma_{H_0}^2)$$

Surrogate alternative hypothesis:
$$p(\mathbf{y}_s | H_1) = \frac{p(\mathbf{y}_s | \mathbf{t}_s, \boldsymbol{\phi}_{H_0}, \sigma_{H_0}^2) p(\mathbf{y}_s | \mathbf{t}_s, \boldsymbol{\phi}_{new}, \sigma_{new}^2)}{Z_1}$$

Hypothesis testing on subwindow:
$$\mathcal{R} = 2 \ln \frac{p(\mathbf{y}_s | H_1)}{p(\mathbf{y}_s | H_0)}$$

$$\mathcal{T}_{I} = \mu_{H_0} + \max \left\{ \sqrt{8 \ln (1/\delta) \sum_{i} \lambda_{i, H_0}^2}, 8 \ln (1/\delta) \max_{i} \left\{ \lambda_{i, H_0} \right\} \right\}$$

$$\mathcal{T}_{II} = \mu_{H_1} - \max \left\{ \sqrt{8 \ln (1/\delta) \sum_{i} \lambda_{i,H_1}^2}, 8 \ln (1/\delta) \max_{i} \left\{ \lambda_{i,H_1} \right\} \right\}$$

Synthetic series

Synthetic series: results

Benchmarks

Synthetic series: results

Benchmarks

ADAGA

F-1 score: real series

ALGORITHM	RUN LOG	BUSINV	OZONE	GDP IRAN	GDP ARGENTINA	GDP JAPAN	AVERAGE
ADAGA (exact, linear)	0.57	0.77		_			0.67
ADAGA (IPs, linear)	0.60	0.63		_			0.62
ADAGA (QFFs, RBF)	_	_	0.97	0.87	0.82	0.89	$\boldsymbol{0.89}$
ADAGA (IPs, RBF)	<u> </u>	_	0.78	0.80	0.89	0.62	0.77
ADAGA (IPs, Matern52)	_	_	0.97	0.80	0.82	0.89	0.87
ADAGA (IPs, RQ)	<u> </u>	_	0.97	0.80	0.82	0.62	0.8
BINSEG (mean)	0.43	0.37	0.65	0.49	0.89	0.62	0.57
BINSEG (mean & var)	0.35	0.24	0.56	0.39	0.8	0.57	0.49
PELT (mean)	0.31	0.37	1.0	0.49	0.89	0.62	0.61
PELT (mean & var)	0.45	0.20	0.60	0.44	0.67	0.50	0.48
BOCPD	0.52	0.27	0.75	0.39	0.80	0.80	0.59
RBOCPDMS	0.42	0.27	0.78	0.49	0.58	0.47	0.50
GPTS-CP (linear+const)	0.84	0.62		_			0.73
GPTS-CP (RQ+const)	_	_	0.65	0.87	$\boldsymbol{0.95}$	0.66	0.78
ZERO	0.45	0.59	0.72	0.65	0.82	0.89	0.69