

Learning from Demonstration: Provably Efficient Adversarial Policy Imitation with Linear Function Approximation

Zhihan Liu¹, Yufeng Zhang¹, Zuyue Fu¹,
Zhuoran Yang², and Zhaoran Wang¹

¹Northwestern University ²Yale University

July 14, 2022

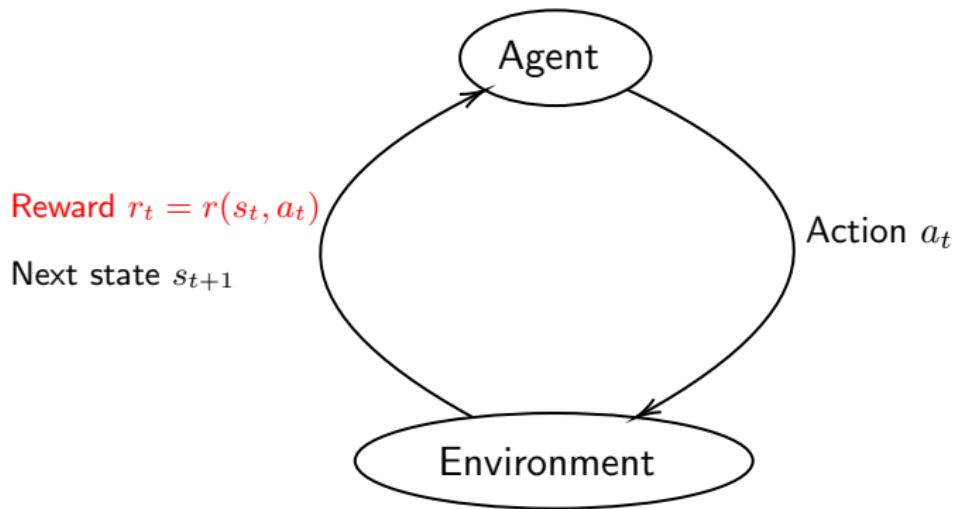
1 Background

2 Challenges and Contributions

3 Optimistic Generative Adversarial Policy Imitation

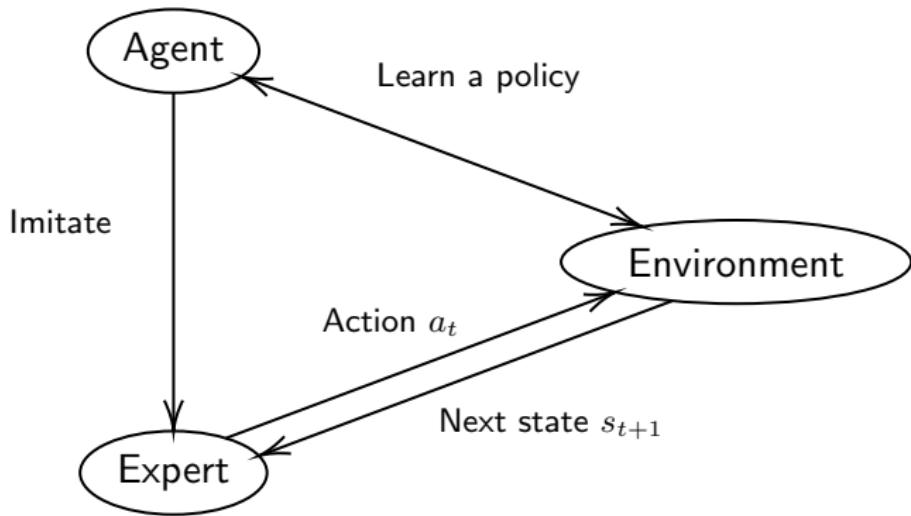
4 Pessimistic Generative Adversarial Policy Imitation

Reinforcement Learning (RL)



The agent aims to learn a policy by interacting with the environment. However, in real-world tasks, the reward function may not be available.

Imitation Learning (IL)



- The agent aims to learn a policy that has similar performance to the expert policy.
- Different from RL, the agent has *no access to reward information but an expert demonstration \mathbb{D}^E* that stores a finite number of expert trajectories.

Generative Adversarial Imitation Learning (GAIL)

Online GAIL (Goodfellow et al., 2014; Arjovsky et al., 2017)

- *Minimax optimization problem:*

$$\min_{\pi \in \Delta(\mathcal{S}|\mathcal{A}, H)} \max_{r \in \mathcal{R}} J(\pi^E, r) - J(\pi, r).$$

- Available: Expert demonstration \mathbb{D}^E and online interaction.
- Lack of theoretical study with linear function approximation on both transition kernels and reward functions.

Offline GAIL

- Scenario: Online interaction is expensive but a historical dataset is available.
- Available: Expert demonstration \mathbb{D}^E and *an additional dataset \mathbb{D}^A collected a priori.*

1 Background

2 Challenges and Contributions

3 Optimistic Generative Adversarial Policy Imitation

4 Pessimistic Generative Adversarial Policy Imitation

Challenges

- *Minimax optimization* problems with respect to the policy and reward function.
- Exploration-exploitation tradeoff in online GAIL and distribution shift in offline GAIL.
- For offline GAIL, we are incapable to update the reward function based on the trajectory of present policy.
- Adoption of *linear function approximation* (Both the transition kernels \mathcal{P}_h and reward set \mathcal{R} is linear).

Main Contribution

- For online GAIL with linear function approximation, we propose OGAPI and prove its online regret, showing that OGAPI is provably efficient.
- For offline GAIL with linear function approximation, we design PGAPI and obtain its optimality gap in the general case.
- If we further assume that the additional dataset has sufficient coverage on the expert policy, we prove that PGAPI achieves global convergence.

1 Background

2 Challenges and Contributions

3 Optimistic Generative Adversarial Policy Imitation

4 Pessimistic Generative Adversarial Policy Imitation

Optimistic Generative Adversarial Policy Imitation (OGAPI)

■ Policy update stage:

- Policy improvement: We apply **mirror descent** to update policy,

$$\pi_h^k(\cdot | s) \propto \pi_h^{k-1}(\cdot | s) \cdot \exp\{\alpha \cdot \hat{Q}_h^{k-1}(s, \cdot)\}.$$

- Policy evaluation: Based on **Bellman equation** and regression on the finite historical data, we update \hat{Q}_h^{k-1} . **Optimistic bonus** is also incorporated here to enhance exploration.

■ Reward update stage:

- **Projected gradient ascent** on the reward parameter,

$$\mu_h^{k+1} = \text{Proj}_B\{\mu_h^k + \eta \hat{\nabla}_{\mu_h} L(\pi^k, \mu^k)\},$$

where $\hat{\nabla}_{\mu_h} L(\pi^k, \mu^k)$ is defined as

$$\underbrace{\nabla_{\mu_h} \tilde{J}(\pi^E, r^\mu) |_{\mu=\mu^k}}_{\text{Monte Carlo (MC) estimation on } \mathbb{D}^E} - \underbrace{\hat{\nabla}_{\mu_h} J(\pi^k, r^\mu) |_{\mu=\mu^k}}_{\text{Evaluated on the trajectory induced by } \pi^k}.$$

Monte Carlo (MC) estimation on \mathbb{D}^E Evaluated on the trajectory induced by π^k .

Analysis of OGAPI

- Online regret for K episodes:

$$\text{Regret}(K) = \max_{r \in \mathcal{R}} \sum_{k=1}^K [J(\pi^E, r) - J(\pi^k, r)]$$

- Theorem 4.1 shows the online regret of OGAPI for K episodes can be bounded by:

$$\text{Regret}(K) \leq \mathcal{O}(\sqrt{H^4 d^3 K} \log(HdK/\xi)) + K\Delta_{N_1},$$

where $\Delta_{N_1} = \mathcal{O}(\sqrt{H^3 d^2 / N_1} \log(N_1/\xi))$ is an inevitable statistical error from the MC estimation on \mathbb{D}^E . Here N_1 is the size of \mathbb{D}^E .

- When $K, N_1 \rightarrow \infty$, average regret $\text{Regret}(K)/K$ shrinks to zero, meaning that the output policy has the same performance on average with π^E w.r.t. the reward set \mathcal{R} .

1 Background

2 Challenges and Contributions

3 Optimistic Generative Adversarial Policy Imitation

4 Pessimistic Generative Adversarial Policy Imitation

Pessimistic Generative Adversarial Policy Imitation (PGAPI)

- Based on \mathbb{D}^A , we construct the estimated kernels \hat{P}_h and uncertainty qualifiers Γ_h (Jin et al., 2021).
- Policy update stage:
 - Policy improvement: Same as OGAPI.
 - Policy evaluation: Based on Bellman equation and constructed \hat{P}_h and uncertainty qualifiers Γ_h , we update \hat{Q}_h^{k-1} . We incorporate pessimism principle by subtraction of Γ_h .
- Reward update stage:
 - Project gradient ascent on the reward parameter,

$$\mu_h^{k+1} = \text{Proj}_B \{ \mu_h^k + \eta \hat{\nabla}_{\mu_h} L(\pi^k, \mu^k) \},$$

where $\hat{\nabla}_{\mu_h} L(\pi^k, \mu^k)$ is defined as

$$\underbrace{\nabla_{\mu_h} \tilde{J}(\pi^E, r^\mu) |_{\mu=\mu^k}}_{\text{Monte Carlo (MC) estimation on } \mathbb{D}^E} - \underbrace{\nabla_{\mu_h} \hat{J}(\pi^k, r^\mu) |_{\mu=\mu^k}}_{\text{Term}(\star)}.$$

- Based on \hat{Q}_h^{k-1} , term (\star) is calculated in Proposition D.1.

Analysis of PGAPI

- Optimality gap:

$$\mathbf{D}_{\mathcal{R}}(\pi^E, \pi) = \max_{r \in \mathcal{R}} [J(\pi^E, r) - J(\pi, r)].$$

- In the general case, Theorem 4.2 characterizes the optimality gap of PGAPI by

$$\mathbf{D}_{\mathcal{R}}(\pi^E, \hat{\pi}) \leq \mathcal{O}\left(\sqrt{H^4 d^2 / K}\right) + \Delta_{N_1} + \text{IntUncert}_{\mathbb{D}^A}^{\pi^E},$$

where the MC estimation error Δ_{N_1} also appears in Theorem 4.1, and intrinsic error $\text{IntUncert}_{\mathbb{D}^A}^{\pi^E}$ is defined as $2 \sum_{h=1}^H \mathbb{E}_{\pi^E}[\Gamma_h(s_h, a_h) \mid s_1 = x]$.

- Proposition F.1 provides a lower bound, showing that PGAPI achieves **minimax optimality** in utilizing \mathbb{D}^A .

Analysis of PGAPI

- **Sufficient Coverage:** A **weak assumption**, which only involves policy π^E and the dataset, and does **NOT** restrict the distribution of the dataset or assume the dataset is well-explored.
- Assuming that \mathbb{D}^A has sufficient coverage, Corollary 4.4 proves that PGAPI attains global convergence at a rate of negative square-root,

$$D_R(\pi^E, \hat{\pi}) \leq \tilde{\mathcal{O}}\left(\sqrt{H^4 d^2 / K} + \sqrt{H^4 d^3 / N_2} + \sqrt{H^3 d^2 / N_1}\right).$$

Thank You!