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Reinforcement Learning (RL)

Reward r: = r(s¢, at) Action a
t

Next state s¢4+1

The agent aims to learn a policy by interacting with the
environment. However, in real-world tasks, the reward function
may not be available.
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Imitation Learning (IL)

Learn a policy

Imitate

Next state s¢+1

m The agent aims to learn a policy that has similar performance
to the expert policy.

m Different from RL, the agent has no access to reward
information but an expert demonstration DY that stores a
finite number of expert trajectories.
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Generative Adversarial Imitation Learning (GAIL)

Online GAIL (Goodfellow et al., 2014; Arjovsky et al., 2017)
m Minimax optimization problem:

min  max J(7",7) — J(x,7).
rEA(S|AH) rER

m Available: Expert demonstration D and online interaction.

m Lack of theoretical study with linear function approximation
on both transition kernels and reward functions.

Offline GAIL

m Scenario: Online interaction is expensive but a historical
dataset is available.

m Available: Expert demonstration D and an additional dataset
DA collected a priori.
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Challenges and Contributions
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Challenges

m Minimax optimization problems with respect to the policy and
reward function.

m Exploration-exploitation tradeoff in online GAIL and
distribution shift in offline GAIL.

m For offline GAIL, we are incapable to update the reward
function based on the trajectory of present policy.

m Adoption of linear function approximation (Both the transition
kernels P, and reward set R is linear).
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Main Contribution

m For online GAIL with linear function approximation, we
propose OGAPI and prove its online regret, showing that
OGAPI is provably efficient.

m For offline GAIL with linear function approximation, we design
PGAPI and obtain its optimality gap in the general case.

m |f we further assume that the additional dataset has sufficient
coverage on the expert policy, we prove that PGAPI achieves
global convergence.
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Optimistic Generative Adversarial Policy Imitation
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Optimistic Generative Adversarial Policy Imitation (OGAPI)

m Policy update stage:
m Policy improvement: We apply mirror descent to update policy,

mh (] s) oM (| s) - expla QF (s, )}

m Policy evaluation: Based on Bellman equation and regression
on the finite historical data, we update Q’fl_l. Optimistic
bonus is also incorporated here to enhance exploration.

m Reward update stage:
m Projected gradient ascent on the reward parameter,

iyt = Projg{uf + V., L7, 1F)},

where V,,, L(n*, %) is defined as

Vi J(ﬂEv ) |u=uk 6#}1 J(ka ) |u=u’°

Monte Carlo (MC) estimation on DE  Evaluated on the trajectory induced by 7*.
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Analysis of OGAPI

m Online regret for K episodes:

K
Regret(K) = J(7®,r) — J(x*
ceret(K) = max Y [J(n%.) = (")
m Theorem 4.1 shows the online regret of OGAPI for K episodes

can be bounded by:

Regret(K) < O(VH*d*K log(HdK/€)) + KAy,
where Ay, = O(y/H3d?/Nylog(N1/£)) is an inevitable
statistical error from the MC estimation on DE. Here Nj is
the size of DF.

m When K, N7 — oo, average regret Regret(K)/K shrinks to
zero, meaning that the output policy has the same
performance on average with 7% w.r.t. the reward set R.
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A Pessimistic Generative Adversarial Policy Imitation
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Pessimistic Generative Adversarial Policy Imitation (PGAPI)

m Based on D?, we construct the estimated kernels 75}1 and
uncertainty qualifiers I'y, (Jin et al., 2021).

m Policy update stage:
m Policy improvement: Same as OGAPI.

m Policy evaluation: Based on Bellman equation_ and constructed

Ph and uncertainty qualifiers I';,, we update Q . We
incorporate pessimism principle by subtraction of I“h.

m Reward update stage:
m Project gradient ascent on the reward parameter,

it = Projp{uy + 1V, L(*, 1)},

where VW L( w*) is defined as
vl»LhJ( )|u:u’° - vuhj(ﬂkvru)hu:uk .
Monte Carlo (MC) estimation on D® Term(x)

m Based on @2‘*1, term (%) is calculated in Proposition D.1.
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Analysis of PGAPI

m Optimality gap:
D (7%, ) = mz%([J(ﬂE,r) — J(m,7)].
re

m In the general case, Theorem 4.2 characterizes the optimality
gap of PGAPI by

Dr (", 7)<O(\/H*d?/K) —|—AN1+IntUncertﬁi,
where the MC estimation error Ay, also appears in
Theorem 4.1, and intrinsic error IntUncertﬁi is defined as
2 ZhH:1 E &[Th(sh,ap) | s1 = x].

m Proposition F.1 provides a lower bound, showing that PGAPI
achieves minimax optimality in utilizing D*.
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Analysis of PGAPI

m Sufficient Coverage: A weak assumption, which only involves
policy 7™ and the dataset, and does NOT restrict the
distribution of the dataset or assume the dataset is
well-explored.

m Assuming that D? has sufficient coverage, Corollary 4.4
proves that PGAPI attains global convergence at a rate of
negative square-root,

D (7%, 7)<O (v HAd2 /K ++/H4d3 /No++/H3d? /Ny).
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Thank You!
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