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Reinforcement Learning (RL)

Agent

Environment

Action at
Reward rt = r(st, at)

Next state st+1

The agent aims to learn a policy by interacting with the
environment. However, in real-world tasks, the reward function
may not be available.
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Imitation Learning (IL)

Agent

Environment

Expert

Imitate

Learn a policy

Next state st+1

Action at

The agent aims to learn a policy that has similar performance
to the expert policy.

Different from RL, the agent has no access to reward
information but an expert demonstration DE that stores a
finite number of expert trajectories.
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Generative Adversarial Imitation Learning (GAIL)

Online GAIL (Goodfellow et al., 2014; Arjovsky et al., 2017)

Minimax optimization problem:

min
π∈∆(S|A,H)

max
r∈R

J(πE, r)− J(π, r).

Available: Expert demonstration DE and online interaction.

Lack of theoretical study with linear function approximation
on both transition kernels and reward functions.

Offline GAIL

Scenario: Online interaction is expensive but a historical
dataset is available.

Available: Expert demonstration DE and an additional dataset
DA collected a priori .
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Challenges

Minimax optimization problems with respect to the policy and
reward function.

Exploration-exploitation tradeoff in online GAIL and
distribution shift in offline GAIL.

For offline GAIL, we are incapable to update the reward
function based on the trajectory of present policy.

Adoption of linear function approximation (Both the transition
kernels Ph and reward set R is linear).
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Main Contribution

For online GAIL with linear function approximation, we
propose OGAPI and prove its online regret, showing that
OGAPI is provably efficient.

For offline GAIL with linear function approximation, we design
PGAPI and obtain its optimality gap in the general case.

If we further assume that the additional dataset has sufficient
coverage on the expert policy, we prove that PGAPI achieves
global convergence.
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Optimistic Generative Adversarial Policy Imitation (OGAPI)

Policy update stage:
Policy improvement: We apply mirror descent to update policy,

πk
h(·| s) ∝ πk−1

h (·| s) · exp{α · Q̂k−1
h (s, ·)}.

Policy evaluation: Based on Bellman equation and regression
on the finite historical data, we update Q̂k−1

h . Optimistic
bonus is also incorporated here to enhance exploration.

Reward update stage:
Projected gradient ascent on the reward parameter,

µk+1
h = ProjB{µk

h + η∇̂µh
L(πk, µk)},

where ∇̂µh
L(πk, µk) is defined as

∇µh
J̃(πE, rµ)|µ=µk︸ ︷︷ ︸

Monte Carlo (MC) estimation on DE

− ∇̂µh
J(πk, rµ)|µ=µk︸ ︷︷ ︸

Evaluated on the trajectory induced by πk.

.
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Analysis of OGAPI

Online regret for K episodes:

Regret(K) = max
r∈R

K∑
k=1

[
J(πE, r)− J(πk, r)

]
Theorem 4.1 shows the online regret of OGAPI for K episodes
can be bounded by:

Regret(K) ≤ O
(√

H4d3K log(HdK/ξ)
)
+K∆N1 ,

where ∆N1 = O(
√

H3d2/N1 log(N1/ξ)) is an inevitable
statistical error from the MC estimation on DE. Here N1 is
the size of DE.

When K,N1 → ∞, average regret Regret(K)/K shrinks to
zero, meaning that the output policy has the same
performance on average with πE w.r.t. the reward set R.
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Pessimistic Generative Adversarial Policy Imitation (PGAPI)

Based on DA, we construct the estimated kernels P̂h and
uncertainty qualifiers Γh (Jin et al., 2021).

Policy update stage:
Policy improvement: Same as OGAPI.
Policy evaluation: Based on Bellman equation and constructed
P̂h and uncertainty qualifiers Γh, we update Q̂k−1

h . We
incorporate pessimism principle by subtraction of Γh.

Reward update stage:
Project gradient ascent on the reward parameter,

µk+1
h = ProjB{µk

h + η∇̂µh
L(πk, µk)},

where ∇̂µh
L(πk, µk) is defined as

∇µh
J̃(πE, rµ)|µ=µk︸ ︷︷ ︸

Monte Carlo (MC) estimation on DE

−∇µh
Ĵ(πk, rµ)|µ=µk︸ ︷︷ ︸

Term(⋆)

.

Based on Q̂k−1
h , term (⋆) is calculated in Proposition D.1.
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Analysis of PGAPI

Optimality gap:

DR(π
E, π) = max

r∈R
[J(πE, r)− J(π, r)

]
.

In the general case, Theorem 4.2 characterizes the optimality
gap of PGAPI by

DR(π
E, π̂)≤O

(√
H4d2/K

)
+∆N1+IntUncertπ

E

DA ,

where the MC estimation error ∆N1 also appears in

Theorem 4.1, and intrinsic error IntUncertπ
E

DA is defined as

2
∑H

h=1 EπE [Γh(sh, ah) | s1 = x].

Proposition F.1 provides a lower bound, showing that PGAPI
achieves minimax optimality in utilizing DA.
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Analysis of PGAPI

Sufficient Coverage: A weak assumption, which only involves
policy πE and the dataset, and does NOT restrict the
distribution of the dataset or assume the dataset is
well-explored.

Assuming that DA has sufficient coverage, Corollary 4.4
proves that PGAPI attains global convergence at a rate of
negative square-root,

DR(π
E, π̂)≤Õ

(√
H4d2/K+

√
H4d3/N2+

√
H3d2/N1

)
.
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Thank You!
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