Fishr Invariant Gradient Variances for Out-of-Distribution Generalization Alexandre Ramé (PhD) Corentin Dancette (PhD) Matthieu Cord (Professor) #### DNNs to detect Covid from medical scans ... Positive Negative #### ... but DNNs memorized biased shortcuts - age: children vs. adults - position: standing up vs. lying down Negative image with shoulders moved Important pixels (rather than analyzing lung fields) ⇒ Simplicity bias deteriorates out-of-distribution generalization # Framework: Training with Multiple Domains Invariance paradigm: the causal mechanism is invariant across domains ## ERM (empirical risk minimization) and invariance approaches $$\mathcal{L}_{ERM} = R_A + R_B \leftarrow Sum of domain-level risks$$ As most works, we add an invariance regularization on top of ERM: #### Invariance in features or losses - [1] Domain-Adversarial Training of Neural Networks. Ganin et al., JMLR 2016 - [2] Deep coral: Correlation alignment for deep domain adaptation. Sun and Saenko, ECCV 2016 - [3] Invariant risk minimization. Arjovsky et al., 2019 - [4] Out-of-distribution generalization via risk extrapolation. Krueger et al., ICML 2021 No traditional methods outperform ERM in DomainBed #### Invariance in gradients! $$G_e = \left[\nabla_{\theta} l\left(f_{\theta}(x_e^i), y_e^i\right)\right]_{i=1}^{n_e}$$ for domain $e \in \{A, B\}$ ### Matching domain-level gradient means Regularization: $\parallel Mean(G_A) - Mean(G_B) \parallel_2^2$ ## Gradient distributions richer than gradient means [2] The impact of neural network overparameterization on gradient confusion and stochastic gradient descent. Sankararaman *et al.*, ICML 2020 11 ^[1] Gradient diversity: a key ingredient for scalable distributed learning. Yin et al., AISTATS 2018 ### Fishr: invariant gradient variances Regularization: $$\| Var(G_A) - Var(G_B) \|_2^2$$ where for $e \in \{A, B\}, G_e = \left[\nabla_{\theta} l\left(f_{\theta}(x_e^i), y_e^i\right)\right]_{i=1}^{n_e}$ ### Invariant gradients #### Invariant gradients thus invariant losses ## Invariant gradients thus invariant losses ... and invariant Hessians! ## Gradient covariance approximates the Hessian (via the Fisher Information Matrix) | Name | Statistics | Formula | | | | | |------------|-------------------------------------|--|--|--|--|--| | С | Gradient Covariance | Cov(G) | | | | | | $ ilde{F}$ | Empirical Fisher Information Matrix | $\sum\nolimits_{i=1}^{n} \nabla_{\theta} log \left(p_{\theta} \left(y^{i} x^{i} \right) \right) \nabla_{\theta} log \left(p_{\theta} \left(y^{i} x^{i} \right) \right)^{T}$ | | | | | | F | True Fisher Information Matrix | $\sum_{i=1}^{n} \mathbb{E}_{\hat{y} \sim P_{\theta}(\cdot x^{i})} [\nabla_{\theta} log \left(p_{\theta}(\hat{y} x^{i}) \right) \nabla_{\theta} log \left(p_{\theta}(\hat{y} x^{i}) \right)^{T}]$ | | | | | | Н | Hessian | $\sum\nolimits_{i=1}^{n} \nabla_{\theta}^{2} l \left(f_{\theta}(x^{i}), y^{i} \right)$ | | | | | [1] On the interplay between noise and curvature and its effect on optimization and generalization. Thomas *et al.*, AISTATS 2020 [2] New insights and perspectives on the natural gradient method. Martens, 2014 ### Fishr matches domain-level loss landscapes With Fishr at convergence at θ^* , $R_A^{\theta^*} \approx R_B^{\theta^*}$, $G_A^{\theta^*} \approx G_B^{\theta^*}$, $H_A^{\theta^*} \approx H_B^{\theta^*}$ Via a 2nd-order Taylor expansion, \forall weights θ close to θ^* : $$R_A^{\theta} \approx R_A^{\theta^*} + (\theta - \theta^*)G_A^{\theta^*} + (\theta - \theta^*)H_A^{\theta^*}(\theta - \theta^*)$$ $$\approx R_B^{\theta^*} + (\theta - \theta^*)G_B^{\theta^*} + (\theta - \theta^*)H_B^{\theta^*}(\theta - \theta^*)$$ $$\approx R_B^{\theta}$$ #### Loss landscape for domain A # $heta_2$ $heta^{*}$ $heta_{1}$ $heta^{i_A}$ $heta^{i$ #### Loss landscape for domain B Reference benchmark for OOD generalization, imposing the *code*, *datasets*, *training procedures*, *hyperparameter search, model selection* etc. | Algo. | Invariance | cMNIST | rMNIST | VLCS | Acc. ↑ PACS | OHome | TerraI | DNet | Rank ↓ Avg Avg | |----------------------|------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|------------------|--| | ERM | X | 57.8 | 97.8 | 77.6 | 86.7 | 66.4 | <u>53.0</u> | 41.3 | 68.7 9.1 | | CORAL
DANN | Features | 58.6
57.0 | 98.0 97.9 | 77.7
79.7 | 87.1
85.2 | 68.4 65.3 | 52.8
50.6 | 41.8
38.3 | 69.2 4.6
67.7 11.9 | | IRM
V-REx | Predictors | 67.7
67.0 | 97.5
<u>97.9</u> | 76.9
78.1 | 84.5
87.2 | 63.0
65.7 | 50.5
51.4 | 28.0
30.1 | 66.9 14.7
68.2 7.7 | | Fish
Fishr | Gradients | 61.8
68.8 | 97.9
97.8 | 77.8
<u>78.2</u> | 85.8
86.9 | 66.0
<u>68.2</u> | 50.8
53.6 | 43.4 41.8 | 69.1 8.4
70.8 3.9 | #### Fishr Contributions - Theoretically - Invariant gradient variances ... - but also invariant losses and Hessians to align landscapes - Empirically - Simple and scalable - State of the Art on DomainBed for OOD generalization Code available: https://github.com/alexrame/fishr Merci!