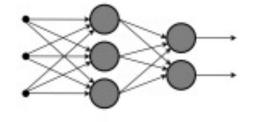


Fishr

Invariant Gradient Variances for Out-of-Distribution Generalization

Alexandre Ramé (PhD) Corentin Dancette (PhD) Matthieu Cord (Professor)

DNNs to detect Covid from medical scans ...



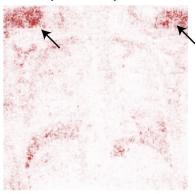
Positive Negative

... but DNNs memorized biased shortcuts

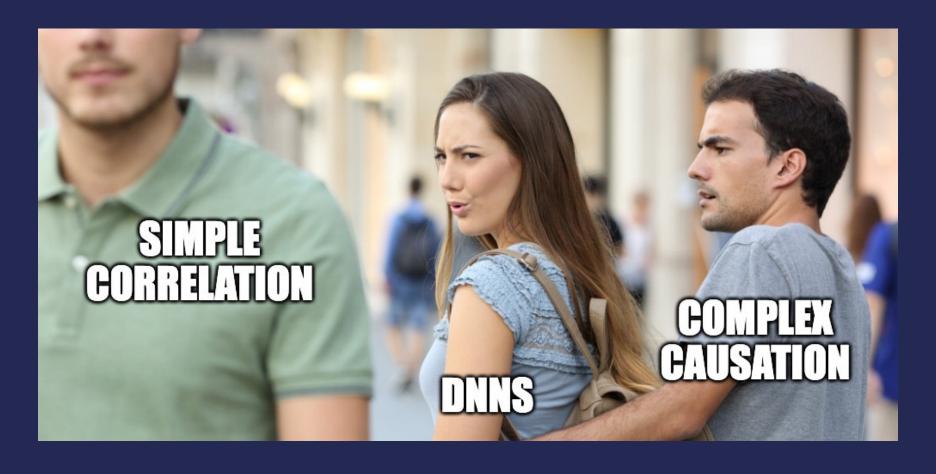
- age: children vs. adults
- position: standing up vs. lying down

Negative image with shoulders moved

Important pixels



(rather than analyzing lung fields)



⇒ Simplicity bias deteriorates out-of-distribution generalization

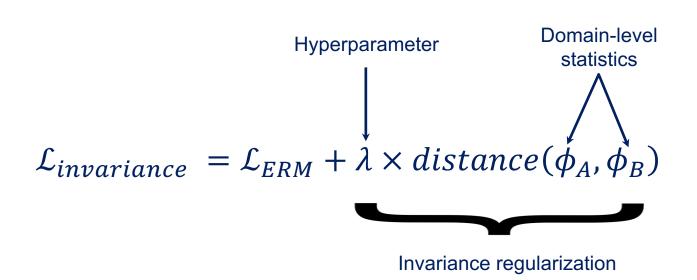
Framework: Training with Multiple Domains

Invariance paradigm: the causal mechanism is invariant across domains

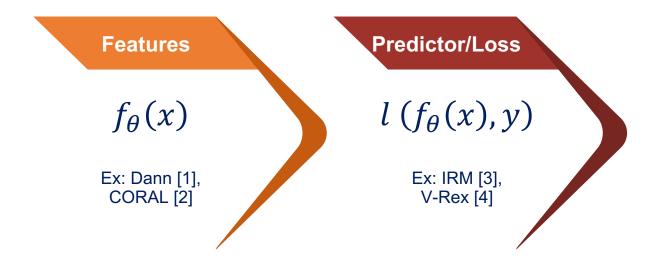
ERM (empirical risk minimization) and invariance approaches

$$\mathcal{L}_{ERM} = R_A + R_B \leftarrow Sum of domain-level risks$$

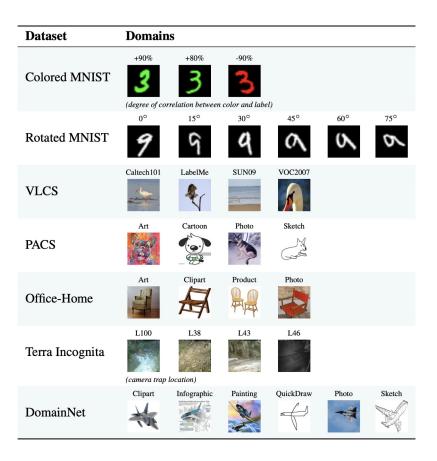
As most works, we add an invariance regularization on top of ERM:



Invariance in features or losses

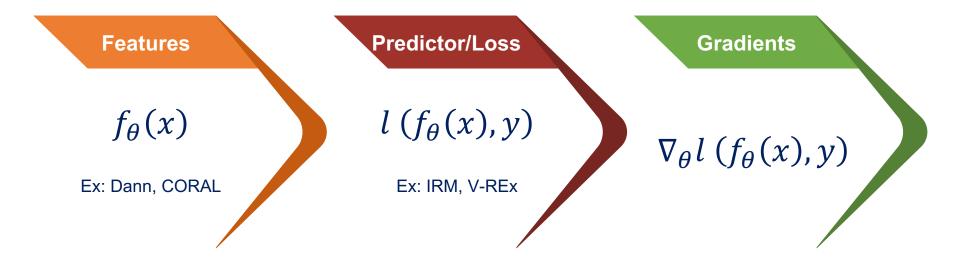


- [1] Domain-Adversarial Training of Neural Networks. Ganin et al., JMLR 2016
- [2] Deep coral: Correlation alignment for deep domain adaptation. Sun and Saenko, ECCV 2016
- [3] Invariant risk minimization. Arjovsky et al., 2019
- [4] Out-of-distribution generalization via risk extrapolation. Krueger et al., ICML 2021



No traditional methods outperform ERM in DomainBed

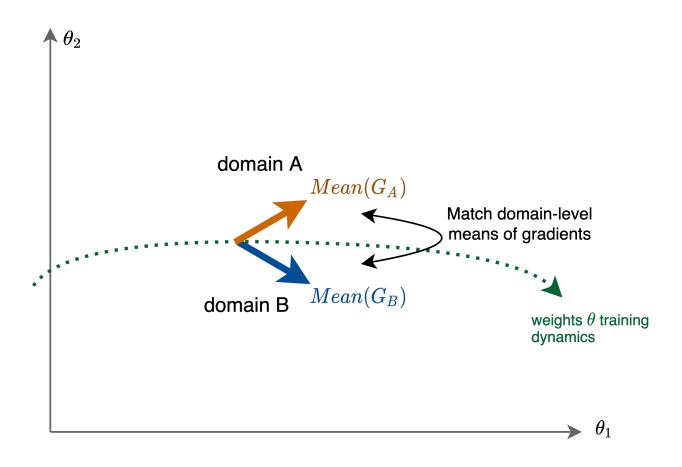
Invariance in gradients!



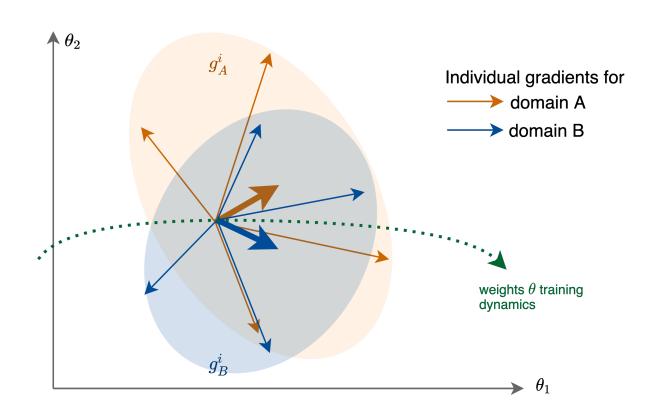
$$G_e = \left[\nabla_{\theta} l\left(f_{\theta}(x_e^i), y_e^i\right)\right]_{i=1}^{n_e}$$
 for domain $e \in \{A, B\}$

Matching domain-level gradient means

Regularization: $\parallel Mean(G_A) - Mean(G_B) \parallel_2^2$



Gradient distributions richer than gradient means



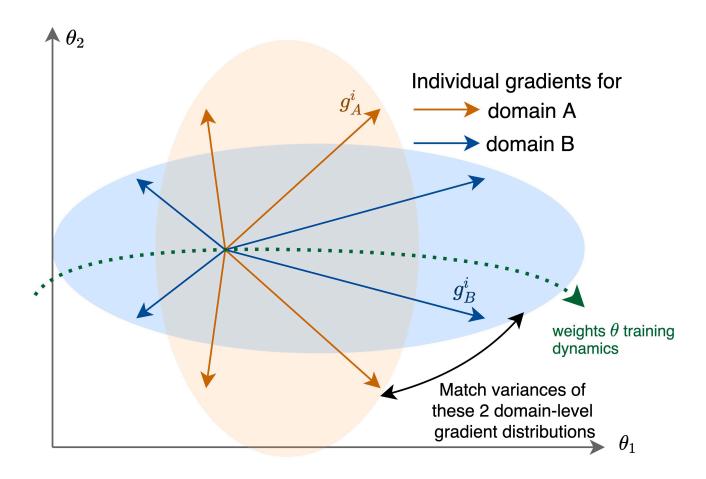
[2] The impact of neural network overparameterization on gradient confusion and stochastic gradient descent. Sankararaman *et al.*, ICML 2020

11

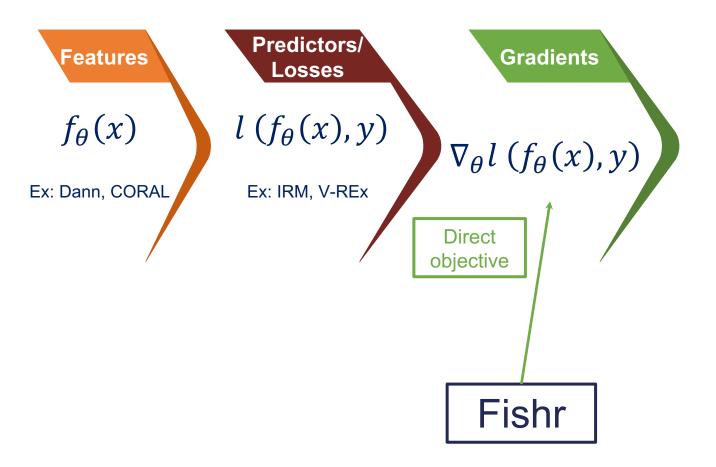
^[1] Gradient diversity: a key ingredient for scalable distributed learning. Yin et al., AISTATS 2018

Fishr: invariant gradient variances

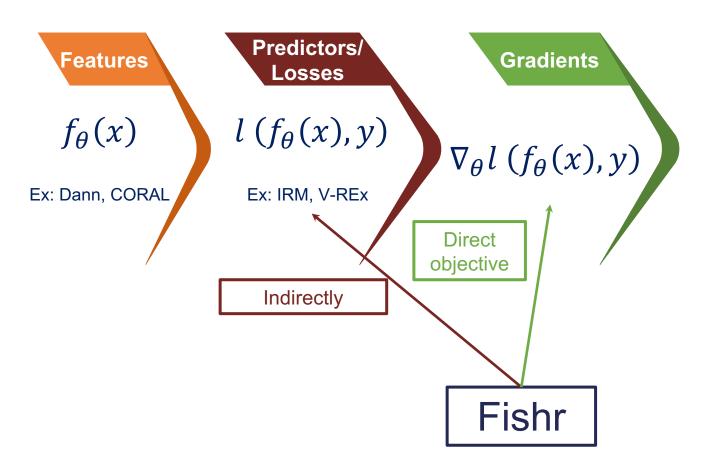
Regularization:
$$\| Var(G_A) - Var(G_B) \|_2^2$$
 where for $e \in \{A, B\}, G_e = \left[\nabla_{\theta} l\left(f_{\theta}(x_e^i), y_e^i\right)\right]_{i=1}^{n_e}$



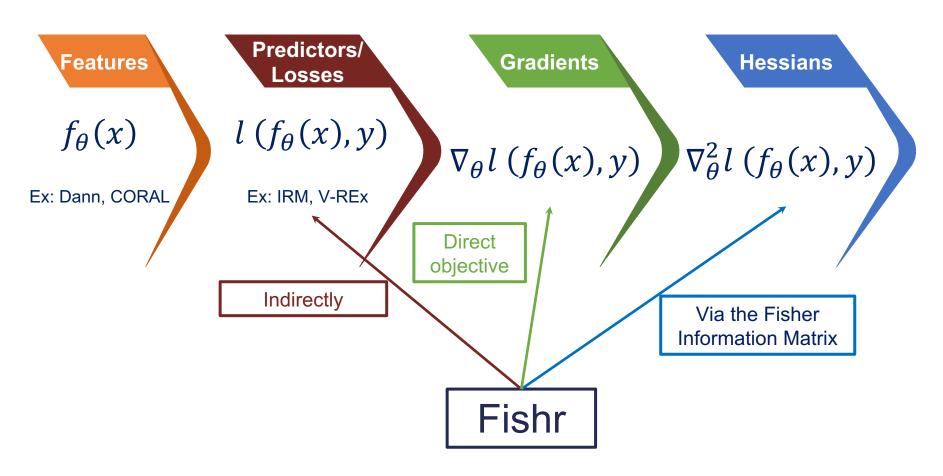
Invariant gradients



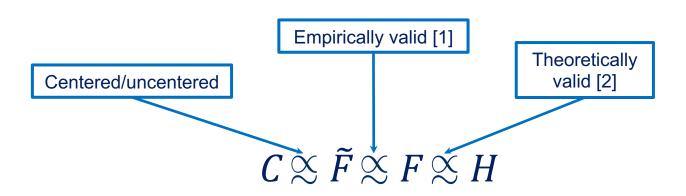
Invariant gradients thus invariant losses



Invariant gradients thus invariant losses ... and invariant Hessians!



Gradient covariance approximates the Hessian (via the Fisher Information Matrix)



Name	Statistics	Formula				
С	Gradient Covariance	Cov(G)				
$ ilde{F}$	Empirical Fisher Information Matrix	$\sum\nolimits_{i=1}^{n} \nabla_{\theta} log \left(p_{\theta} \left(y^{i} x^{i} \right) \right) \nabla_{\theta} log \left(p_{\theta} \left(y^{i} x^{i} \right) \right)^{T}$				
F	True Fisher Information Matrix	$\sum_{i=1}^{n} \mathbb{E}_{\hat{y} \sim P_{\theta}(\cdot x^{i})} [\nabla_{\theta} log \left(p_{\theta}(\hat{y} x^{i}) \right) \nabla_{\theta} log \left(p_{\theta}(\hat{y} x^{i}) \right)^{T}]$				
Н	Hessian	$\sum\nolimits_{i=1}^{n} \nabla_{\theta}^{2} l \left(f_{\theta}(x^{i}), y^{i} \right)$				

[1] On the interplay between noise and curvature and its effect on optimization and generalization. Thomas *et al.*, AISTATS 2020

[2] New insights and perspectives on the natural gradient method. Martens, 2014

Fishr matches domain-level loss landscapes

With Fishr at convergence at θ^* , $R_A^{\theta^*} \approx R_B^{\theta^*}$, $G_A^{\theta^*} \approx G_B^{\theta^*}$, $H_A^{\theta^*} \approx H_B^{\theta^*}$

Via a 2nd-order Taylor expansion, \forall weights θ close to θ^* :

$$R_A^{\theta} \approx R_A^{\theta^*} + (\theta - \theta^*)G_A^{\theta^*} + (\theta - \theta^*)H_A^{\theta^*}(\theta - \theta^*)$$

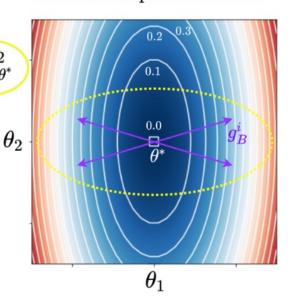
$$\approx R_B^{\theta^*} + (\theta - \theta^*)G_B^{\theta^*} + (\theta - \theta^*)H_B^{\theta^*}(\theta - \theta^*)$$

$$\approx R_B^{\theta}$$

Loss landscape for domain A

$heta_2$ $heta^{*}$ $heta_{1}$ $heta^{i_A}$ $heta^{i$

Loss landscape for domain B



Reference benchmark for OOD generalization, imposing the *code*, *datasets*, *training procedures*, *hyperparameter search, model selection* etc.

Algo.	Invariance	cMNIST	rMNIST	VLCS	Acc. ↑ PACS	OHome	TerraI	DNet	Rank ↓ Avg Avg
ERM	X	57.8	97.8	77.6	86.7	66.4	<u>53.0</u>	41.3	68.7 9.1
CORAL DANN	Features	58.6 57.0	98.0 97.9	77.7 79.7	87.1 85.2	68.4 65.3	52.8 50.6	41.8 38.3	69.2 4.6 67.7 11.9
IRM V-REx	Predictors	67.7 67.0	97.5 <u>97.9</u>	76.9 78.1	84.5 87.2	63.0 65.7	50.5 51.4	28.0 30.1	66.9 14.7 68.2 7.7
Fish Fishr	Gradients	61.8 68.8	97.9 97.8	77.8 <u>78.2</u>	85.8 86.9	66.0 <u>68.2</u>	50.8 53.6	43.4 41.8	69.1 8.4 70.8 3.9

Fishr Contributions

- Theoretically
 - Invariant gradient variances ...
 - but also invariant losses and Hessians to align landscapes
- Empirically
 - Simple and scalable
 - State of the Art on DomainBed for OOD generalization

Code available: https://github.com/alexrame/fishr

Merci!

