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Motivation

• Goal：Eliminate the effect of 
redundant content (inter-ference of 
other tissues) and mine the essential 
content (disease-related features) 
hidden in the image.

• Clinical scenario: A considerable 
proportion of lesions are obscured by 
other normal tissues such as glandular 
and fibrous tissues, especially in the 
imaging modality of X-ray with the 
principle of projection overlay imaging

• Challenge：It is still a challenge to 
identify lesion characteristics in 
obscured images, as many lesions 
are obscured by other tissues.
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With the advances of computer vision, a number of methods in natural images 
processing, particularly for image restore[1,2,3], are designed to remove the redundant 
noise (such as haze, rain, and etc.) and enhance the main content in the image. 



Overview of Proposed Pipeline 



Compositing by Alpha Blending
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For learning disease related features of obscured masses, we try to composite obscured 
data and get disentangle training supervision meanwhile. We employ a parsimonious 
mechanism, alpha blending, for obscured mass generation.

where �푖� is a vector of pixel values in position (i, j) 
and �푖� is a scalar alpha value of the same position.



Learning Disentanglement with Composite 

Two-Branch Decoder
ℒ푟��
�  ��, ��� ≔ �� − �� ��, ���  1

ℒ푟��
�  ��, ��� ≔ �� − �� ��, ���  1

Disease Classifier
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Experimental Setup 

• DDSM Dataset & Inhouse1 & Inhouse2 & Inhouse3

We randomly divide the whole set into training, validation and testing as 8:1:1 in patient-wise. 



AUC Evaluation



Ablation Study



Visualization of Blending



Visualization of Disease-related Features



Thanks for your attention! 


