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Introduction

The most fundamental gradient-based explanation is the saliency map.




Introduction

* Prior works show that gradient-based interpretability methods could
be noisy in part due to local variations in partial derivatives.

* In order to overcome this, prior work propose to compute the
expected output of gradient-based methods with respect to their
input.



Introduction

 SmoothGrad computes the expectation of the gradient under
Gaussian perturbations:

II5:z~]\f(0,l) [fo(x + Z)]
* Later, methods like SmoothGrad squared and VarGrad were proposed.

* Those methods are not backed up in theory.



Introduction

Issue: Existing sampling-based methods rely on the assumption that
the features are uncorrelated.

In this work, we provide a theoretical framework that applies
functional entropy as a guiding concept to the amount of information a
given deep net holds for a given input with respect to any possible
labels.



Background - notation

Let f,,(x) = p,,(¥|x) be the probability assigned to a label y by a model f on

a data sample x.
The of the non-negative label function f,, = 0 is

fy(2)
4 (z) lo 2 dv(z).
rtfy S 2 fy @ dua) 2

Wherev = N (x, ).
We hence define the functional entropy of a deep net with respect to a label
y by the function Softmax output f,(z) when z ~ v.



Background - entropy and explainability

The functional entropy can be thought of as the KL divergence between
the prior distribution p, (z) and the posterior distribution g,,(z) of the

decision function f,, (z) with respect to the data generating distribution
over Z.

Then, we have:
— KL(QV(Z)HPV(Z))-



Background - Log-Sobolev inequality

Instead of directly estimating the functional entropy (which is
intractable), we use the log-Sobolev inequality.

This permits to bound the functional entropy with the functional Fisher
information:

dv(z).

1 1 (V5@ Vf,(2)
< Ejv(fy) — EfRd = fy(Z)y



—eature Contribution via Functional Fisher
nformation

We propose a sampling-based method that can quantify the
contribution of an input feature x; to the decision function f,,:

V@)
jv(fy) o Z IE _ fy(Z)

We need to overcome two challenges to use functional entropy and
functional Fisher information as guiding concepts.



—eature Contribution via Functional Fisher
nformation

Challenge: Real-world data features are correlated.

Theorem 1: For every non-negative function fy and a Gaussian
measure i ~ N (x, )

1 (ZVf,(2), VS, (2))
Entﬂ(fY) = E[Rd fy(Z)

du(z).



—eature Contribution via Functional Fisher
nformation

Challenge: Computation of subset of features

Theorem 2: For a partitioned input x = (x4, X5), a Gaussian measure U,
a conditional distribution p,, and a marginal distribution u,. For every

non-negative function f,;: R% — IR

Ent,(fy) < Zz~uz[ ,(Hlz2)].
And,

Ent,, (fylxz) < %jﬂl (fylz2)-



Thanks for listening!




