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Introduction

The most fundamental gradient-based explanation is the saliency map. 



Introduction

• Prior works show that gradient-based interpretability methods could 
be noisy in part due to local variations in partial derivatives.
• In order to overcome this, prior work propose to compute the 

expected output of gradient-based methods with respect to their 
input.



Introduction

• SmoothGrad computes the expectation of the gradient under 
Gaussian perturbations:

𝔼!∼𝒩 $,& ∇'𝑓 𝑥 + 𝑧
• Later, methods like SmoothGrad squared and VarGrad were proposed.
• Those methods are not backed up in theory.



Introduction

Issue: Existing sampling-based methods rely on the assumption that 
the features are uncorrelated.

In this work, we provide a theoretical framework that applies 
functional entropy as a guiding concept to the amount of information a 

given deep net holds for a given input with respect to any possible 
labels. 



Background - notation

Let 𝑓! 𝑥 = 𝑝" 𝑦|𝑥 be the probability assigned to a label 𝑦 by a model 𝑓 on 
a data sample 𝑥. 

The functional entropy of the non-negative label function 𝑓! ≥ 0 is

𝐸𝑛𝑡# 𝑓! ≜ ∫ℝ! 𝑓! 𝑧 log %" &

∫ℝ! %" & () &
𝑑𝜈(𝑧).

Where 𝜈 = 𝒩 𝑥, I . 

We hence define the functional entropy of a deep net with respect to a label 
𝑦 by the function Softmax output 𝑓! 𝑧 when 𝑧 ∼ 𝜈.



Background - entropy and explainability

The functional entropy can be thought of as the KL divergence between 
the prior distribution 𝑝( 𝑧 and the posterior distribution 𝑞( 𝑧 of the 
decision function 𝑓) 𝑧 with respect to the data generating distribution 
over 𝑧. 

Then, we have:
𝐸𝑛𝑡( = 𝐾𝐿 𝑞( 𝑧 ||𝑝( 𝑧 .



Background - Log-Sobolev inequality

Instead of directly estimating the functional entropy (which is 
intractable), we use the log-Sobolev inequality. 
This permits to bound the functional entropy with the functional Fisher 
information:

𝐸𝑛𝑡( 𝑓) ≤
1
2
ℐ( 𝑓) ≜

1
2
6
ℝ!

∇𝑓) 𝑧 , ∇𝑓) 𝑧
𝑓) 𝑧

𝑑𝜈 𝑧 .



Feature Contribution via Functional Fisher 
Information
We propose a sampling-based method that can quantify the 
contribution of an input feature 𝑥+ to the decision function 𝑓):

ℐ( 𝑓) =:
+

𝔼
∇𝑓) 𝑧 +

,

𝑓) 𝑧

We need to overcome two challenges to use functional entropy and 
functional Fisher information as guiding concepts.



Feature Contribution via Functional Fisher 
Information
Challenge: Real-world data features are correlated.

Theorem 1: For every non-negative function 𝑓) and a Gaussian 
measure 𝜇 ∼ 𝒩 𝑥, 𝛴

𝐸𝑛𝑡- 𝑓) ≤
1
2
6
ℝ!

Σ∇𝑓) 𝑧 , ∇𝑓) 𝑧
𝑓) 𝑧

𝑑𝜇 𝑧 .



Feature Contribution via Functional Fisher 
Information
Challenge: Computation of subset of features
Theorem 2: For a partitioned input 𝑥 = (𝑥., 𝑥,), a Gaussian measure 𝜇, 
a conditional distribution 𝜇., and a marginal distribution 𝜇,. For every 
non-negative function 𝑓): ℝ/ → ℝ,

𝐸𝑛𝑡- 𝑓) ≤
1
2
𝔼!"∼-" ℐ-# 𝑓)|𝑧, .

And,

𝐸𝑛𝑡-# 𝑓)|𝑥, ≤ .
,
ℐ-# 𝑓)|𝑧, .



Thanks for listening!
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