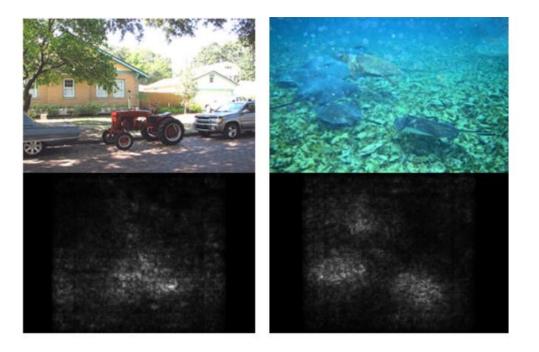


A Functional Information Perspective on Model Interpretation

Itai Gat, Nitay Calderon, Roi Reichart, Tamir Hazan

ICML 2022

The most fundamental gradient-based explanation is the saliency map.



- Prior works show that gradient-based interpretability methods could be noisy in part due to local variations in partial derivatives.
- In order to overcome this, prior work propose to compute the expected output of gradient-based methods with respect to their input.

• SmoothGrad computes the expectation of the gradient under Gaussian perturbations:

 $\mathbb{E}_{z\sim\mathcal{N}(0,I)}[\nabla_x f(x+z)]$

- Later, methods like SmoothGrad squared and VarGrad were proposed.
- Those methods are not backed up in theory.

Issue: Existing sampling-based methods rely on the assumption that the features are uncorrelated.

In this work, we provide a theoretical framework that applies functional entropy as a guiding concept to the amount of information a given deep net holds for a given input with respect to any possible labels.

Background - notation

Let $f_y(x) = p_w(y|x)$ be the probability assigned to a label y by a model f on a data sample x.

The *functional entropy* of the non-negative label function $f_{\gamma} \ge 0$ is

$$Ent_{\nu}(f_{y}) \triangleq \int_{\mathbb{R}^{d}} f_{y}(z) \log \frac{f_{y}(z)}{\int_{\mathbb{R}^{d}} f_{y}(z) d\mu(z)} d\nu(z).$$

Where $v = \mathcal{N}(x, I)$.

We hence define the functional entropy of a deep net with respect to a label y by the function Softmax output $f_{\nu}(z)$ when $z \sim \nu$.

Background - entropy and explainability

The functional entropy can be thought of as the KL divergence between the prior distribution $p_{\nu}(z)$ and the posterior distribution $q_{\nu}(z)$ of the decision function $f_{\nu}(z)$ with respect to the data generating distribution over z.

Then, we have:

$$Ent_{\nu} = KL(q_{\nu}(z)||p_{\nu}(z)).$$

Background - Log-Sobolev inequality

Instead of directly estimating the functional entropy (which is intractable), we use the log-Sobolev inequality.

This permits to bound the functional entropy with the *functional Fisher information*:

$$Ent_{\nu}(f_{y}) \leq \frac{1}{2} \mathcal{I}_{\nu}(f_{y}) \triangleq \frac{1}{2} \int_{\mathbb{R}^{d}} \frac{\left\langle \nabla f_{y}(z), \nabla f_{y}(z) \right\rangle}{f_{y}(z)} d\nu(z) \,.$$

Feature Contribution via Functional Fisher Information

We propose a sampling-based method that can quantify the contribution of an input feature x_i to the decision function f_{γ} :

$$\mathcal{I}_{\nu}(f_{\mathcal{Y}}) = \sum_{i} \mathbb{E}\left[\frac{\left(\nabla f_{\mathcal{Y}}(z)_{i}\right)^{2}}{f_{\mathcal{Y}}(z)}\right]$$

We need to overcome two challenges to use functional entropy and functional Fisher information as guiding concepts.

Feature Contribution via Functional Fisher Information

Challenge: Real-world data features are correlated.

Theorem 1: For every non-negative function f_y and a Gaussian measure $\mu \sim \mathcal{N}(x, \Sigma)$ $Ent_{\mu}(f_y) \leq \frac{1}{2} \int_{\mathbb{R}^d} \frac{\langle \Sigma \nabla f_y(z), \nabla f_y(z) \rangle}{f_y(z)} d\mu(z).$

Feature Contribution via Functional Fisher Information

Challenge: Computation of subset of features

Theorem 2: For a partitioned input $x = (x_1, x_2)$, a Gaussian measure μ , a conditional distribution μ_1 , and a marginal distribution μ_2 . For every non-negative function f_y : $\mathbb{R}^d \to \mathbb{R}$, $Ent_{\mu}(f_y) \leq \frac{1}{2} \mathbb{E}_{z_2 \sim \mu_2} [\mathcal{I}_{\mu_1}(f_y | z_2)].$

And,

$$Ent_{\mu_1}(f_y|x_2) \leq \frac{1}{2}\mathcal{I}_{\mu_1}(f_y|z_2).$$

Thanks for listening!

