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Activation Compressed Training (ACT)
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Activation Compressed Training (ACT) is a promising approach to reduce the memory footprint.
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Previous Work

Previous Work: A white box solution that is specific to network architecture and operator type.
* ActNN (CNN), Mesa (Vision Transformer), EXACT (GNN).

To support a new network architecture with new operators:
’i Require to derive new convergence guarantee.
’I Require ML experts to design compression schemes (e.g., bits/dim.).
’l Require engineering effort to support for new operators.

We want a general ACT framework that works with any network architecture and
operator type!

Jianfei Chen, Lianmin Zheng, Zhewei Yao, Dequan Wang, lon Stoica, Michael W Mahoney, and Joseph E Gonzalez. Actnn: Reducing training memory footprint via 2-bit activation compressed
training. In International Conference on Machine Learning, 2021.

Zizheng Pan, Peng Chen, Haoyu He, Jing Liu, Jianfei Cai, and Bohan Zhuang. Mesa: A memory-saving training framework for transformers. arXiv preprint arXiv:2111.11124, 2021.
Anonymous. EXACT: Scalable graph neural networks training via extreme activation compression. In Submitted to The Tenth International Conference on Learning Representations, 2022.



Challenge & System Architecture

Developing a generic ACT framework is challenging:
* Theory: convergence guarantees must be made without assumptions on the network architecture.
* Algorithm: find effective compression strategies for all kinds of networks automatically.
* System: support arbitrary NN operations, including user-defined ones.
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Convergence of ACT

Key idea: Construct an unbiased approximation of the Activation Compressed (AC) gradient by linearizing
the gradient function. Consider the first-order Taylor expansion of g(+; 8) at h:

g(Q(h); h,0) = g(h; 0) + J(h,0)(Q(h) — h)

When the compression is accurate:
* The linearized gradient g is accurate

* The variance of the unbiased gradient dominates the linearized gradient variance

ACT behaves as if the activation compressed gradient is unbiased



Adapt the Compression Rate

Formalize the adaptive algorithm as an optimization problem: find the compression scheme to
minimize the gradient variance given the bits constraint.

mbin V(b; h; 8), st. Y. bD;, <B

Use linearized approximation to make the problem solvable
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System Implementation

import torch
import gact

model = ... # user defined model

controller = gact.controller(model, opt_level='L2')
controller.install_hook()
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# training loop
for epoch in ...
for iter in ...

# instruct gact how to perform forward and backward

/

def fwdbwdprop():
output = model(data)
loss = loss_func(output, target)
optimizer.zero_grad()
loss.backward()

controller.iterate(fwdbwdprop)

* Implementation: pack _hook,
unpack_hook

Three lines of
modification in
PyTorch



Experiments — Compression Strategy

Inferred per-tensor sensitivity and bits/dim.
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Assign bits based on tensor sensitivity.

Gradient Variance Evolution of the per-tensor sensitivity
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Sensitivity remains stable
during training.

With the adaptive algorithm,
Var(adapt 4 bits/dim) < Var(uniform
8 bits/dim.).



Experiments

* GACT can be applied to a wide range of deep learning tasks: Computer Vision, NLP, graph NN.
* GACT has negligible accuracy loss compared with full precision training.

GACT

Task Model FP32 | Adapt 4bit (L1)

VGGl11 68.75

ResNet-50 77.29
Swin-tiny 81.18
Faster RCNN | 37.4

Computer Vision:

Det. RetinaNet | 36.5 >
Reduce activation by

Model | Dataset | FP32 | GACT Adapt 4bit (L1) | up to 8. 1x!
Flickr | 51.17 £ 0.19 | 51.08 + 0.18§(7.93x)
SER Reddit | 9533 +£0.07 | 95.32 + 0.07§(7.90%)
Yelp 39.86 + 0.94 | 40.06 + 0.74)(6.42x)
. ogbn-arxiv | 71.51 & 0.65 | 71.35 - 0.36}(8.09x)
Graph NN: Flickr | 52.40 +0.28 | 52.26 + 0.31}(4.34x)
GAT Reddit | 95.95+0.06 | 96.02 + 0.09§(4.29x)
Yelp 5241 +0.69 | 52.18 + 0.38§(4.18%)
ogbn-arxiv | 71.68 4= 0.54 | 71.80 £ 0.47§(5.09x)
Flickr | 52.37 £0.16 | 52.31 + 0.16§(4.91x)
Gong | Reddit | 96324024 | 96.11 + 0.22§4.52x)
Yelp 62.33 £ 0.20 | 62.28 + 0.26§(5.34%)
ogbn-arxiv | 72.52 + 0.12 | 72.28 + 0.35}(6.74 %)
NLP: MNLI | 86.74 + 0.24 | 86.61 + 0.11}(7.38x)
Bert- SST-2 | 93.69 +0.30 | 93.54 + 0.52§(7.30%)
large MRPC | 88.20 +0.02 | 87.90 % 0.10§(7.40x)
QNLI | 9229 +0.14 | 92.44 + 0.07§(7.42x)




Experiments
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 GACT can be combined with other memory-efficient training techniques (e.g. efficient-softmax, gradient
checkpointing).

* GACT enables training with a 4.2x to 24.7x larger batch size.



Conclusion

* GACT: Reducing memory footprint by quantizing the activation
* Theory: Convergence guarantee for general networks

* Algorithm: Adaptive quantization techniques to find compression schemes
automatically

e System: A Plug-and-Play PyTorch library that supports arbitrary NN operations
* GitHub: https://tinyurl.com/mr274yfs




