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Context

Interpretability-Oriented model
Neuro-Logic models; e.g. solutions expressed as first-order logic (FOL) formula
Inductive Logic Programming (ILP): goal is to find a FOL that explains positive
and negative examples given some background knowledge, e.g:

Even(X )← Zero(X )
Even(X )← Even(Y ) ∧ Aux(Y , X )

Aux(X , Y )← Succ(X , Z ) ∧ Succ(Z , Y ),
(1)

Neuro-symbolic methods: ⇝ continuous relaxation of this discrete space of FOL.
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Our Model: HRI, Neuro-symbolic hierarchical model

I Embeddings-based model: learn embeddings for each predicate 1

⇝ semantic or visual priors on concepts can be leveraged (via embeddings initialization).
II New compact yet expressive representation, through concept of

proto-rules, which encompasses multiple meta-rules.2
⇝ Generic set templates, not hand-designed for each task.
⇝ Characterize its expressivity (cf. Theorem 1 below).

III Hierarchical and incremental prior

IV Interpretability-oriented training method.
V Rule Induction. The valuations of predicates are computed via a soft unification

between proto-rules and predicates.

1Extension of LRI Campero et al. [2018] ; embeddings for both heads and atoms.
2Meta-rule corresponds to a second-order clause with predicate variables; e.g.

H(X , Y )← B1(X , Z) ∧ B2(Z , Y )
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Hierarchical Model

Figure: Hierarchical Model
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Expressivity Analysis

I Designed an expressive and minimal set of proto-rules R0:

R0 :=


A : H(X ) ←B1(X , Y )∧B2(Y , X )

B : H(X , Y )←B1(X , Z ) ∧B2(Z , Y )

C : H(X , Y )←B1(X , Y )∧B2(Y , X )


II Characterize its expressivity:

Theorem 1

The hypothesis space generated by R0 from P is exactly the set of function-free definite
Horn clause fragment F{1,2}

P,≤2 composed of clauses with at most two body atoms
involving unary and binary predicates in P.

5/11 Neuro-Symbolic Hierarchical Rule Induction



References

Experiments

Empirical validation on various domains:
I classical ILP benchmark tasks

II large domain GQA (Hudson and Manning [2019]) extracted from Visual Genome
(Krishna et al. [2017])

III RL tasks: block manipulation tasks: Stack, Unstack, and On (cf. Jiang and Luo
[2019])

Comparison with various models:
I Neuro-Symbolic Models e.g. dILP (Evans and Grefenstette [2018]), NLM (Dong

et al. [2019]), DLM (Zimmer et al. [2021]), NLRL (Jiang and Luo [2019]), NLIL
(Yang and Song [2020])

II Traditional ILP Methods e.g. ILASP (Law et al. [2020]) and Popper ([Cropper and
Morel, 2021])
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Conclusion

HRI, new neuro-symbolic interpretable model performing hierarchical rule induction
through soft unification with learned embeddings.
⇝ Initialized by a theoretically-backed small-yet-expressive set of proto-rules, able

tackle many classical ILP benchmark tasks.
⇝ Efficiency and performance in ILP, RL, and richer domain against state-of-the-art

baselines: typically one to two orders of magnitude faster to train.
⇝ Can leverage semantic or visual priors, and manifest some combinatorial

generalisation
⇝ Future extensions could extend proto-rule set to broaden model expressivity for

further RL domains and continual learning scenario.
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Appendix: Model Inference

The valuations of predicates are computed via a soft unification between proto-rules and
predicates using learnable embeddings.
More precisely, one inference step in our model is formulated as follows:

vand = poolP1,P2 (αP1B1 · αP2B2 · and[vP1 , vP2 ])

vor = or [vand , poolP3 (αP3B3 · vP3)]

v = merge (vold , vor ) ,

(2)

where v (resp. vold) denotes the new (resp. old) valuation of a grounded auxiliary
predicate P. For an auxiliary predicate at layer ℓ, the pool operation encompass a max
over the groundings compatible to P followed by a pooling performed over both
predicates P1, P2, P3 ∈ P↓

ℓ .
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