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Technological developments has led to a surge in real-time data

loT, Sensors, Machine health, Cloud Computing

Complex data that humans alone cannot
understand, manage, monitor and fix!
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- Real-time data generation and decision
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Anomaly detection : Important sub-routine for many monitoring and control applications
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Performance monitoring, Security monitoring, Capacity provisioning . .
Software upgrade, percolating over time

Application Challenges:

- Real-time data generation and decision
- Unknown data distribution
- Distributions can and will change with time
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Competitive with offline methods if the data-stream is “nice and stationary”
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Streaming

Limited supervision

. Adaptive to distribution shifts — gradual and sudden

Robust to a few outliers/adversarialy corrupted points

Competitive with offline methods if the data-stream is “nice and stationary”

- All existing methods achieve some, but not all these desiderata



1. Statistical formulation of desiderata
- |dentify problem complexity parameters
- Lower bounds

2. Prove the desiderata is a non-trivial benchmark
- Not achieved by obvious algorithms
- Fixed window sliding
- Ignoring learning from samples predicted to be an anomaly

3. In the case when the data stream is Gaussian distributed, we propose FITNESS : GAUSSIAN that
provably achieves the desiderata

4. For the general case, we propose FITNESS : GENERAL,
- AD Model-agnostic
- Flexible : takes a batch AD model and converts it to an online version that satisfying desiderata.
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Unsupervised Online Anomaly Detection : several algorithms have been proposed over the years

MEMSTREAM [Bhatia et al., '21] , SketchDetect [Huang et al., “15] : Discards samples that appear anomalous at the moment of arrival
KitSune [Mirsky et al., 18], xXSTREAM [Manzoor et al., 2018], Streaml|F [Ding et al., “13] : Fixed sliding window methods
DiLOF [Na et al., ‘18], RSHash [Sathe et al., ‘16], RCF [Guha et al,. ‘16], IF [Liu et al., ‘08], EIF [Harari et al., ‘19] : Offline methods

Continual Learning : Adaptivity demonstrated to drifts only in one-dimensional setting

[Lu et al., 18], [Gupta et al., "13], [Bifet et.al., '07], [Bifet et.al., ‘09]

Online supervised learning : These methodologies do not apply to unsupervised streams

[Chu et al., '04], [Defazio et al., "14], DYNASAGA [Daneshmand et al., ‘16] ,DriftSurf [Tahmasbi et al., '21]

Robust Learning : Only works in the offline case
[Diakonikolas et al., "17],[Diakonikolas et al., 18], [Cheng et al., "19],[Cheng et al., '20]




Problem Statement
At each timet=1,2,..., given a vector X, € R? as input, output an anomaly score S; € R
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Model Class Parameters
(Autoencoder, Isolation Forest) (Network Weights, Tree Splits)




Notation Meaning

O The set of all possible parameters
g(-,+) : © % R » R A family of anomaly scoring functions
g(6’, X) Anomaly score given by model 6 on input X

F Family of probability distributions from which the each data point X is sampled from
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Notation Meaning
O The set of all possible parameters
g(-,+) : © % R » R A family of anomaly scoring functions
g(é’, X) Anomaly score given by model 6 on input X
F Family of probability distributions from which the each data point X is sampled from
Example — Autoencoder as an anomaly scoring function A
~ X
X © The set of all possible weights of a fixed architecture ®
> 0% %oy
\Decoder/ 9(0, X) :==[[X = X||  Reconstruction error is the anomaly score 0 g0 >
/ Encoder \
X

Goal : Given g(., .) and F, how to choose the parameter g at each time, in an online fashion
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Sequential Interaction with an adversary

t-3 t-2 t-1 t Time

v

At each time instant t,

1. The adversary picks a distribution D; € F

The adversary then samples X; ~ D;independently at random
The adversary chooses an arbitrary corruption C¢
Adversary reveals X; := X; + ¢; to the AD Algorithm

o~ W

Subsequently, the AD algorithm depending on (Xs)sgt all inputs thus far,
a) Picks an action 6, € ©
b) Outputs anomaly score g(@t, Xt)
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Anomaly Scores to be low for non-anomalous points and high for anomalous points

Which inputs are not anomalous ?

If no adversarial corruption, i.e., ¢¢ = 0 => Sample is benign and not an anomaly

Desired Output on non-anomalous points ?

Score point X; with parameters 6; “close” to some arg Ienlél EXNDt [9(9, X)]
S

Performance Measure

Closeness measured by L(+,:) : @ x © — R , a loss function.
L(01,02) measures difference between functions g(01, ) and g(82, -)

Example: For the autoencoder model, the L2 norm between the weights H(91 — 05 || is a “good measure”

of AD performance deviation between models ¢1and 0>

[Kim et. al. 20] prove this measure to be valid for any Lipschitz model g( . , . ).



Define the instantaneous regret of the AD algorithm at time t, denoted by 71 as

ry = inf{L(0;,0%),0" € argmin Ex, .p,[g(0, X¢)]} How far is the model used at time t
0€0 from the optimal possible model
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Define the instantaneous regret of the AD algorithm at time t, denoted by 71 as

ry = inf{L(0;,0%),0" € arg gnlél Ex,~p,lg9(0, X:)]} How far is the model used at time t
<

from the optimal possible model

T
Regret RT ‘= E 1(Ct — O)rt Total cumulative regret on non-anomalous points
t=1

Central Design Question

Can an algorithm be designed such that regret is small, whenever the adversary is constrained to

place only a “small number” of anomalies and “small amount” of distribution drift ?
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Schematic of distribution Sum of cumulative distribution differences
T
: : o P----
Measuring Drift ¢ .= ZTotal—Varlatlon(Dt_l,Dt) @ - ®
t=2
> >
time time

T
Number of Anomalies T := Z 1(ct #0)

t=1

The algorithm does not know these parameters.

An online algorithm A is said to be adaptive and robust, if forevery p < 1 and ¢ < 1,

ElR
there exists 3 < 1 such that limsup sup L < 0.

T—oo DeFst., 1P —
OITP,
T<TC

An algorithm has small regret, whenever the “complexity” of the problem is small.



Regret cannot be sublinear in T, if number of corruptions is linear in T, even if there is no distribution shift

Proposition 4.1 : There is an universal constant ¢ > 0, such that if all samples in the data stream are i.i.d.,
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from a Gaussian distribution of unit variance and unknown mean, then irfl\f Ry > CT(T —7T)




Regret cannot be sublinear in T, if number of corruptions is linear in T, even if there is no distribution shift

Proposition 4.1 : There is an universal constant ¢ > 0, such that if all samples in the data stream are i.i.d.,

T

from a Gaussian distribution of unit variance and unknown mean, then i./réllf Rr > Cf(T —7T)

Regret cannot be sublinear in T, if total distribution shift is linear in T, even if there are no anomalies

Proposition 4.2 : There exists a finite family of distributions J such that every data stream D from this

, 1
family satisfies (I)(D) < ( and incurs regret H,altf sup E[Rp| > 2—4T2/3C1/3
— D



Simpler Task :

Given an unknown stream of vectors H1:H2: +, let X; ~ N(u, I) independently, and X; = )A(,t + ¢

Estimate the mean [i; from samples.

At each time t,

Input - Xy 1= Zy + pir + ¢
Output - [1; an estimate of [y

True Mean
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800 1000

G

Random Realization with 2% corruptions

600 800 1000

T
oal : Minimize regret Ry := Z 1(c; = 0) || s — jue|

t=1

We show this to be an instantiation of our general model



Output the average of the past B samples

)

[
LY Xems H |5 X — X[ <A

J

X otherwise

v

2% Anomalies

60 T T
----- True Mean
50 —— Sliding Window size = 10
—— Sliding Window size = 100 . .
40 Sliding Window size = 500 | Main D||emma

Need many past samples for the average to concentrate around the mean

Samples too far in the past may not be reflective of the current distribution

0 200 400 600 800 1000
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ldea — Only average those points that are not declared an anomaly at the time of arrival

This is a popularly used paradigm in many published algorithms

This will clearly fail to adapt to the “new normal” in the example below.

Thus, it is important to not discard a sample even if it looks anomalous.



Our Proposal - Estimate the mean from the largest set of recent samples that are relevant.



Our Proposal - Estimate the mean from the largest set of recent samples that are relevant.

Algorithm 1: FITNESS :GAUSSIAN
Input: o > 0, Slack parameter § € (0,1), Time horizon T', C' as given in Definition 11

1 for each timet > 1 do

2 | Receive Input X; € R?

3 7 +<1

s | while |13 70X, - X, <G (1+ Z) Vdolog () do

5 | j<i+1

~ ) —1

Key trick is to introduce j on the RHS of the condition in line 4.

As more samples from the past are averaged, we want the concentration to be higher.



FITNESS Achieves the Desiderata

J*(t) is the first time instant while scanning backwards from t, when [t significantly deviates from the
average of the means in the time-window [J*(t), t].

Definition 17. For everyt € {1,2,--- ,T} that is non-anomalous (i.e., c; = 0), define J*(t) as

2
> 0% tog (T_) }
J )

J*(t) := inf {j € {1,2,---,t},s.t.

14~

Mt — = Z(Nt—s+0t—s)
J s=0

where inf of an empty set is defined as J*(t) :=t+ 1.

Theorem 18. If Algorithm 1 is run with slack parameter 6 € (0,1), then with probability at-least 1 — 6, the
following regret bound holds

T
do T?
Ry < ;20 -1 log (T) :

This result implies that the FITNESS is both adaptive and robust.
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1. Computational Complexity is not added as a desiderata

- FITNESS takes O(t) time per sample. Ideally need O(1) computation time per sample

2. We only have provable robustness and adaptivity in the Gaussian case

Practical Anomaly Detection are typically in heavy-tailed and time-series settings



Thank You

More details in the paper

FITNESS (Fine Tune on New and Similar Samples) to detect anomalies in streams with drifts and outliers



