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No-regret learning in the context of normal-form games (NFGs) has been 

studied extensively
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When all players learn using no-regret dynamics 

(e.g., MWU), the empirical frequency of play 

converges to the set of coarse correlated equilibria

Landmark result in theory of learning in games:

Even more, in two-player zero-sum games, the average 

strategies converge to the set of Nash equilibria



As of today, learning is by far the most scalable way of 
computing game-theoretic solutions and equilibria in 

large games

1. Linear time strategy updates

2. Each agent learns in parallel

3. Can often be implemented in a decentralized way



Over the past decade, faster and faster no-regret dynamics have been 

developed for normal-form games

• Per-player regret bound:
•✅ Polylog dependence on the number of 

actions

•✅ Polylog(T) dependence on time

• Sum of players’ regrets
•✅ Polylog dependence on #actions

•✅ Constant dependence on time 

•✅ Last-strategy convergence* (2pl 0sum)

⭐ Most studied algorithm as of today: Optimistic Multiplicative Weights Update (OMWU)

Implies ෨𝑂
1

𝑇
convergence to coarse 

correlated equilibrium in self-play

[Daskalakis et al. ‘21]

Implies 𝑂
1

𝑇
convergence to Nash eq. in 

two-player zero-sum games

[Syrgkanis et al. ‘15]

[Hsieh et al. ’21; Wei et al. ‘21]



However, normal-form games are a rather limited model 
of strategic interaction

All players act once and simultaneously

No sequential actions

No observations about other players’ actions



Extensive-Form Games (EFGs)

EFGs capture both sequential and simultaneous moves, as 

well as imperfect information and stochastic moves

Each player faces a tree-form decision problem

Very expressive model of interaction

Examples of EFGs: chess, poker, bridge, security games, …



Online learning results for EFGs are harder to come by, due to their more 

intricate strategy sets

• Per-player regret bound:
•✅ Polylog dependence on the number of 

actions

•✅ Polylog(T) dependence on time

• Sum of players’ regrets
•✅ Polylog dependence on #actions

•✅ Constant dependence on time 

•✅ Last-strategy convergence*

Normal-Form Games Extensive-Form Games

❌Not known

🟨 Less is known



For example, all these were all developed later for EFGs than NFGs (and 
sometimes only with weaker guarantees):

• Good distance measures [Hoda et al. ‘10; Kroer et al. ‘15; Farina et al. ‘21]

• Efficient optimistic algorithms [Farina et al. ‘19]

• Last-iterate convergence [Wei et al. ’21, Lee et al. ’21]

For many years, the EFG community has been “chasing” the NFG community, extending 

NFG breakthroughs to EFGs, when possible

In fact, this paper was born from our desire to extend the 

polylog(T) regret bounds by [Daskalakis et al. ‘21] to EFGs.



For example, all these were all developed later for EFGs than NFGs (and 
sometimes only with weaker guarantees):

• Good distance measures [Hoda et al. ‘10; Kroer et al. ‘15; Farina et al. ‘21]

• Efficient optimistic algorithms [Farina et al. ‘19]

• Last-iterate convergence [Wei et al. ’21, Lee et al. ’21]

For many years, the EFG community has been “chasing” the NFG community, extending 

NFG breakthroughs to EFGs, when possible

Does it have to be like that? Or can we somehow bridge the gap and inherit 

the best properties of NFG algorithms also in EFGs?



Can we somehow bridge the gap?

Folklore result: any EFG can be converted into an equivalent NFG where each 

player’s action set is the set of all deterministic policies in their tree-form 

decision problem. So, if we applied OMWU to that….

Catch: the number of such policies is exponential in each player’s tree size

The common wisdom is wrong

Common wisdom: because of the exponential blowup, the above approach is 

a computational dead end

⚡Consequence: specialized techniques were developed for EFGs, and 
progress on EFGs and NFGs follows separate tracks for decades



We call our algorithm Kernelized OMWU (KOMWU)

This paper: It is possible to simulate OMWU on the normal-

form equivalent of an EFGs, in linear time per iteration in the 

tree size, via a kernel trick



In fact, kernelized OMWU applies to any polyhedral domain with

0/1-coordinate vertices Ω ⊆ ℝ𝑑

Main theorem: OMWU on the set of vertices of Ω can be 

simulated using 𝑑 + 1 evaluations of the kernel at each iteration

So, if each kernel evaluation can be performed in 
poly(d) time, OMWU can be simulated in poly(d) time



KOMWU closes part of the gap between learning in NFGs and EFGs

• It achieves all the strong properties of OMWU there were so far only 

known to be achievable efficiently in NFGs (including polylog regret)

• …as well as any future regret bounds that might get proven for OMWU!

As an unexpected byproduct, KOMWU obtains new state-of-the-art regret 

bounds among all online learning algorithms for extensive-form problems

Improved dependence 
on the ℓ1 norm of the 
strategy space  (half of 

the exponent)

Near-optimal O(polylog 
T) regret bound


