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No-regret learning in the context of normal-form games (NFGs) has been
studied extensively
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Landmark result in theory of learning in games:

When all players learn using no-regret dynamics
(e.g.. MWU), the empirical frequency of play
converges to the set of coarse correlated equilibria

Even more, in two-player zero-sum games, the average
strategies converge to the set of Nash equilibria



As of today, learning is by far the most scalable way of
computing game-theoretic solutions and equilibria in
large games

1. Linear time strategy updates
2. Each agent learns (n parallel
3. Can often be implemented in a decentralized way



Over the past decade, faster and faster no-regret dynamics have been
developed for normal-form games

® Most studied algorithm as of today: Optimistic Multiplicative Weights Update (OMWU)

* Per-player regret bound:
* | Polylog dependence on the number of

. =(1
Implies O (;) convergence to coarse

correlated equilibrium in self-play

actions
* |v] Polylog(T) dependence on time [Daskalakis et al. “21]
° SU m Of p|ayers’ reg rets Implies O (%) convergence to Nash eq. in
- (] Polylog dependence on #actions two-player zero-sum games
] Constant dependence on time [Syrgkanis et al. “15]

* V] Last-strategy convergence* (2pl Osum) [Hsieh etal. 21; Wei et al. “21]




However, normal-form games are a rather limited model
of strategic interaction

All players act once and simultaneously
No sequential actions
No observations about other players’ actions



Extensive-Form Games (EFGS)

Each player faces a tree-form decision problem

EFGs capture both sequential and simultaneous moves, as
well as imperfect information and stochastic moves

Very expressive model of interaction
Examples of EFGs: chess, poker, bridge, security games, ...



Online learning results for EFGs are harder to come by, due to their more
Intricate strategy sets

Normal-Form Games
* Per-player regret bound:
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Polylog(T) dependence on time

Extensive-Form Games

¥ Not known

« Sum of players’ regrets
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Constant dependence on time
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Last-strategy convergence*

Less is known




For many years, the EFG community has been “chasing” the NFG community, extending
NFG breakthroughs to EFGs, when possible

For example, all these were all developed later for EFGs than NFGs (and
sometimes only with weaker guarantees):

* Good distance measures [Hoda et al. ‘10; Kroer et al. “15; Farina et al. '21]
« Efficient optimistic algorithms [Farina et al. "19]
* Last-iterate convergence [Wei et al. 21, Lee et al. '21]

In fact, this paper was born from our desire to extend the
polylog(T) regret bounds by [Daskalakis et al. ‘21] to EFGs.



For many years, the EFG community has been “chasing” the NFG community, extending
NFG breakthroughs to EFGs, when possible

For example, all these were all developed later for EFGs than NFGs (and
sometimes only with weaker guarantees):

* Good distance measures [Hoda et al. ‘10; Kroer et al. “15; Farina et al. '21]
« Efficient optimistic algorithms [Farina et al. "19]
* Last-iterate convergence [Wei et al. 21, Lee et al. '21]

Does it have to be like that? Or can we somehow bridge the gap and inherit
the best properties of NFG algorithms also in EFGs?



Can we somehow bridge the gap?

Folklore result: any EFG can be converted into an equivalent NFG where each
player’s action set is the set of all deterministic policies in their tree-form
decision problem. So, if we applied OMWU to that....

Catch: the number of such policies is exponential in each player’s tree size

Common wisdom: because of the exponential blowup, the above approach is
a computational dead end

4 Consequence: specialized techniques were developed for EFGs, and
progress on EFGs and NFGs follows separate tracks for decades

The common wisdom is wrong



This paper: It is possible to simulate OMWU on the normal-
form equivalent of an EFGs, in linear time per iteration in the
tree size, via a kernel trick

We call our algorithm Kernelized OMWU (KOMWU)



In fact, kernelized OMWU applies to any polyhedral domain with
0/1-coordinate vertices () € R4

Main theorem: OMWU on the set of vertices of Q can be
simulated using d + 1 evaluations of the kernel at each iteration

So, if each kernel evaluation can be performed in
poly(d) time, OMWU can be simulated in poly(d) time



KOMWU closes part of the gap between learning in NFGs and EFGs

* It achieves all the strong properties of OMWU there were so far only
known to be achievable efficiently in NFGs (including polylog regret)
« ...as well as any future regret bounds that might get proven for OMWU!

As an unexpected byproduct, KOMWU obtains new state-of-the-art regret
bounds among all online learning algorithms for extensive-form problems

Kernelized Multiplicative Weights for (0/1-Polyhedral Games

Algorithm Per-player regret bound Last-iter. conv.T
CFR (regret matching / regret matching™) (Zinkevich et al., 2007)  O(VA||Q|1 T'/?) no

CFR (MWU) (Zinkevich et al., 2007)  O(y/Iog A||Ql, TY/?) no
FTRL / OMD (dilated entropy) (Kroer et al., 2020)  O(y/log A2P/2||Q||; T*/?) no
FTRL / OMD (dilatable global entropy) (Farina et al., 2021a)  O(/Tog 4 || Q|| T/?) 10
Kernelized MWU (this paper) O(y/Tog 4 /[|Q||: T no
Optimistic FTRL / OMD (dilated entropy) (Kroer et al., 2020)  O(y/mlog(A) 27 ||Q||? T'/4) yes’
Optimistic FTRL / OMD (dilatable gl. ent.) (Farina et al., 2021a)  O(y/mlog(A) ||Q|? T'/*) = no
Kernelized OMWU (this paper) O(mlog(A)|Q|i*Tog" (T)) yes

Improved dependence
on the £; norm of the

strategy space (half of
the exponent)




