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Introduction

> Vision transformer architectures very successful at image tasks

> A variety of attention mechanisms have been proposed:
self-attention, MLP-Mixer, Fourier Neural Operator (FNO),
and more!

» However, these architectures are not theoretically understood
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Contributions

» Prove that self-attention, MLP-Mixer, and FNO with linear
and RelLU activation can be solved to their global optima by
demonstrating their equivalence to convex optimization
problems.

» Provide interpretability to the optimization objectives of these
attention modules.

» Validate the (convex) vision transformers perform better than
baseline convex methods in a transfer learning task (see

paper).
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Preliminaries: Background

> Training data {X; € R®*9}"__, corresponding labels of
arbitrary size {Y; € R™*“}"

» Solve the optimization problem
= m|nZ£ fa(Xi),Yi) + R(6) (1)

» Can include classification, where r = 1, or for regression,
where r = s, one can directly use squared loss or other convex
loss functions.

» One may also use this formulation to apply to both supervised
and self-supervised learning.
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Single Block of Multi-Head Self-Attention

> jth self-attention head given by

XiQj KTXT
6(X,) =0 T X,‘Vj, (2)
» Multi-head self-attention
fursa(Xi) == [A(Xi) -+ f(X;))] W
z'": <x QJKTXT> VW -
=2 0| — 74— | XViW,
j=1 vd
» Can simplify as
7 XWX T
frmsa(X ZU ( L ) XiWa;. (4)
j=1
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Convexity of Linear Multi-Head Self-Attention

Theorem
Pose the non-convex weight-decay linear-activation multi-head
self-attention training problem

n m
psa i=_min ZL’(Z X,-lex;rXinj,Yi)
Wi W i j=1

/8 m
+ 5 D IWIE + [Wa 7.
j=1

Then, for 3 > 0 and m > m* where m* < min{d27 dc}, this is
equivalent to a convex optimization problem

n d d
Psa = min ZE(ZZGi[kag]Xiz(k’@,Yi>+5”ZH*

d2 x d
ZERT Xy k=1 (=1

where G; 1= X,TX,- and Z(k0) ¢ Rdxc,

(5)

(6)
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Interpretation of Linear Multi-Head Self-Attention
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Figure 1: (a) Input image is first divided into hw = s patches, where each
patch is represented by a latent vector of dimension d. (b) The
(non-convex) scaled dot-product self-attention applies learnable weights
Qj, Kj, V; to the patch embeddings X;. (c) In the equivalent convex
optimization problem for the self-attention training objective, the Gram
matrix G; is formed that groups latent features in B different blocks, (d)
and accordingly the nuclear norm regularization is imposed on the dual

variables Z based on the similarity scores G;[k, /].
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Conclusion

A similar procedure can be used to analyze self-attention with
RelLU, as well as

» MLP-Mixer
» FNO
» A modification of FNO called block-FNO (BFNO)
with both ReLU and linear activations (see paper). In summary,

» Studied the vision transformer problem by finding convex
equivalents to single attention blocks.

» These dual forms provide new interpretations, and provide
better convex solvers than previously formulated
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