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Introduction

I Vision transformer architectures very successful at image tasks
I A variety of attention mechanisms have been proposed:

self-attention, MLP-Mixer, Fourier Neural Operator (FNO),
and more!

I However, these architectures are not theoretically understood
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Contributions

I Prove that self-attention, MLP-Mixer, and FNO with linear
and ReLU activation can be solved to their global optima by
demonstrating their equivalence to convex optimization
problems.

I Provide interpretability to the optimization objectives of these
attention modules.

I Validate the (convex) vision transformers perform better than
baseline convex methods in a transfer learning task (see
paper).
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Preliminaries: Background

I Training data {Xi ∈ Rs×d}ni=1, corresponding labels of
arbitrary size {Yi ∈ Rr×c}ni=1

I Solve the optimization problem

p∗ := min
θ

n∑
i=1

L (fθ(Xi ),Yi ) +R(θ) (1)

I Can include classification, where r = 1, or for regression,
where r = s, one can directly use squared loss or other convex
loss functions.

I One may also use this formulation to apply to both supervised
and self-supervised learning.
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Single Block of Multi-Head Self-Attention

I jth self-attention head given by

fj(Xi ) := σ

(
XiQjK>j X

>
i√

d

)
XiVj , (2)

I Multi-head self-attention

fMHSA(Xi ) :=
[
f1(Xi ) · · · fm(Xi )

]
W

=
m∑
j=1

σ

(
XiQjK>j X

>
i√

d

)
XiVjWj (3)

I Can simplify as

fMHSA(Xi ) :=
m∑
j=1

σ

(
XiW1jX>i√

d

)
XiW2j . (4)
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Convexity of Linear Multi-Head Self-Attention

Theorem
Pose the non-convex weight-decay linear-activation multi-head
self-attention training problem

p∗SA := min
W1j ,W2j

n∑
i=1

L(
m∑
j=1

XiW1jX>i XiW2j ,Yi )

+
β

2

m∑
j=1

‖W1j‖2F + ‖W2j‖2F . (5)

Then, for β > 0 and m ≥ m∗ where m∗ ≤ min{d2, dc}, this is
equivalent to a convex optimization problem

p∗SA = min
Z∈Rd2×dc

n∑
i=1

L

(
d∑

k=1

d∑
`=1

Gi [k , `]XiZ(k,`),Yi

)
+ β‖Z‖∗ (6)

where Gi := X>i Xi and Z(k,`) ∈ Rd×c . 6 / 8



Interpretation of Linear Multi-Head Self-Attention

Figure 1: (a) Input image is first divided into hw = s patches, where each
patch is represented by a latent vector of dimension d . (b) The
(non-convex) scaled dot-product self-attention applies learnable weights
Qj , Kj , Vj to the patch embeddings Xi . (c) In the equivalent convex
optimization problem for the self-attention training objective, the Gram
matrix Gi is formed that groups latent features in B different blocks, (d)
and accordingly the nuclear norm regularization is imposed on the dual
variables Z based on the similarity scores Gi [k , l ].
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Conclusion

A similar procedure can be used to analyze self-attention with
ReLU, as well as
I MLP-Mixer
I FNO
I A modification of FNO called block-FNO (BFNO)

with both ReLU and linear activations (see paper). In summary,
I Studied the vision transformer problem by finding convex

equivalents to single attention blocks.
I These dual forms provide new interpretations, and provide

better convex solvers than previously formulated
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