The Role of Deconfounding in Meta-Learning

Reporter: Yinjie Jiang

5/27/2022

Contents

- Meta-learning and Memorization Overfitting
- A Causal View of Meta-Learning
- Deconfounded MAML
- Experimental Results

Meta-learning and Memorization Overfitting

Formulate meta-learning and memorization overfitting

Formulation of Meta-learning

- Meta-learning learns the model initialization θ from a series of tasks \mathcal{T}_i sampled from a task distribution $p(\mathcal{T})$.
- Gradient-based meta-learning formulate learning such a initialization θ as a bi-level optimization problem.

Formulation of Meta-learning

The inner-loop optimizes the task objective:

$$\mathcal{L}(\phi_i) = \frac{1}{K^s} \sum_{j=1}^{K^s} \mathcal{L}(f_{\phi_i,\theta}(x_{i,j}^s), y_{i,j}^s)$$

• The outer-loop optimizes the meta objective:

$$\mathcal{L}(\theta) = \frac{1}{N} \sum_{i=1}^{N} \mathbb{E}_{p(\phi_i | \theta, s_i)} \left[\frac{1}{K^q} \sum_{j=1}^{K^q} \mathcal{L}(f_{\phi_i, \theta} \left(x_{i, j}^q \right), y_{i, j}^q) \right]$$

Memorization in Meta-learning

• Memorization overfitting [1] means the metaknowledge memorizes all query sets in meta-training tasks even without adapting on the support sets

A Causal View of Meta-Learning

Explain the memorization overfitting under a causal perspective

Causal Graph of Meta-learning

- We construct a causal graph according to the workflow of meta-learning.
- We find that memorization is mainly caused by the label space of query set Y, which becomes a confounder during meta-optimization.

Deconfounded Meta-knowledge

- Regularizer-based method [1]
 - To weaken the correlation between Y and θ'
 - Suffering from a trade-off of effectiveness and generalization
- Augmentation-based method [2,3]
 - To randomize the labels of query sets
 - Only partially blocking the correlation

^[1] Yin, M., Tucker, G., Zhou, M., Levine, S., & Finn, C. (2019, September). Meta-Learning without Memorization. In *International Conference on Learning Representations*.

^[2] Rajendran, J., Irpan, A., & Jang, E. (2020). Meta-learning requires meta-augmentation. *Advances in Neural Information Processing Systems*, 33, 5705-5715. [3] Yao, H., Huang, L. K., Zhang, L., Wei, Y., Tian, L., Zou, J., & Huang, J. (2021, July). Improving generalization in meta-learning via task augmentation. In *International Conference on Machine Learning* (pp. 11887-11897). PMLR.

Deconfounded Meta-model

- Under the causal view, we apply front-door adjustment to disconnect ϕ and θ' so that the backdoor path from θ' to θ is blocked.
- The deconfounded meta-learning model is

$$p(\theta|do(\theta'), S, Q) = \sum_{\Phi} p(\Phi|\theta', S)p(\theta|do(\Phi), Q)$$

$$= \sum_{\Phi} p(\Phi|\theta', S) \sum_{\theta'_i} p(\theta|\Phi, \theta'_i, Q)p(\theta'_i)$$

$$= \sum_{\theta'_i} p(\theta|\Phi, \theta'_i, Q)p(\theta'_i)$$

How to stratify θ' ?

- MAML-Dropout
 - To split θ' into different parts by dropout
- Font-door adjustment is:

$$p(\theta|do(\theta'), S, Q) = \int p(\theta|\Phi, \theta'_i, Q) p(\theta'_i) d\theta'_i$$

$$\approx \frac{1}{N} \sum_{i=1}^{N} p(\theta|\Phi, \theta'_i, Q)$$

$$= \frac{1}{N} \sum_{i=1}^{N} p(\theta|\Phi, \theta', Q, z_i)$$

 z_i is a set of dropout variables sampled from Bernoulli distribution.

How to stratify θ' ?

- MAML-Bins
 - To generate several feature groups which are stratifications of θ' .
 - Feature groups are classified by unsupervised methods.
- Font-door adjustment is:

$$p(\theta|do(\theta'), S, Q) = \frac{1}{M} \sum_{i=1}^{M} p(\theta|\Phi, \theta'_i, Q)$$

In *i*-th group, the feature $feat_i = f_{\theta_i}(x)$, where x is the input and θ_i indicates the parameters that lead to this feature group.

• The output of the model is an average result of these feature groups.

Experimental Results

Report our experiments and conclusions.

Performance of Regression

Table 3: Performance (MSE \pm 95% confidence interval) of pose prediction.

Model	10-ѕнот	15-ѕнот
WEIGHT DECAY CAVIA META-DROPOUT META-AUG MR-MAML IFSL	2.772 ± 0.259 3.021 ± 0.248 3.236 ± 0.257 2.553 ± 0.265 2.907 ± 0.255 3.186 ± 0.256	2.307 ± 0.226 2.397 ± 0.191 2.425 ± 0.209 2.152 ± 0.227 2.276 ± 0.169 2.482 ± 0.231
TAML ANIL ANIL-METAMIX ANIL-OURS MAML	2.785 ± 0.261 6.746 ± 0.416 6.354 ± 0.393 6.289 ± 0.416 3.098 ± 0.242	2.196 ± 0.163 6.513 ± 0.384 6.112 ± 0.381 6.064 ± 0.397 2.413 ± 0.177
MAML-METAMIX MAML-OURS	2.438 ± 0.196 2.396 ± 0.209	2.003 ± 0.147 1.931 ± 0.134
METASGD METASGD-METAMIX METASGD-OURS	2.803 ± 0.239 2.390 ± 0.191 2.369 ± 0.204	2.331 ± 0.182 1.952 ± 0.154 1.926 ± 0.112
T-NET T-NET-METAMIX T-NET-OURS	2.835 ± 0.189 2.563 ± 0.201 2.487 ± 0.212	2.609 ± 0.213 2.418 ± 0.182 2.402 ± 0.178

Table 2: Performance of drug activity prediction.

Model	Group 1		GROUP 2		GROUP 3		Group 4					
	MEAN	MED.	> 0.3	MEAN	MED.	> 0.3	MEAN	MED.	> 0.3	MEAN	MED.	> 0.3
ANIL	0.357	0.294	50	0.300	0.245	45	0.327	0.301	50	0.338	0.302	50
ANIL-ours	0.394	0.321	53	0.312	0.284	46	0.338	0.271	48	0.370	0.297	50
MAML	0.366	0.317	53	0.312	0.239	44	0.321	0.258	43	0.348	0.280	47
MAML-ours	0.410	0.376	60	0.320	0.275	46	0.355	0.257	48	0.370	0.337	56
METASGD	0.388	0.306	51	0.298	0.236	41	0.326	0.237	46	0.353	0.316	52
METASGD-ours	0.390	0.342	57	0.316	0.269	43	0.358	0.339	56	0.360	0.311	50

Performance of Image Classification

Table 4: Performance (accuracy \pm 95% confidence interval) of image classification on Omniglot and MiniImagenet.

Model	Omn	IGLOT	MiniImagenet			
	20-way 1-shot	20-way 5-shot	5-way 1-shot	5-way 5-shot		
WEIGHT DECAY	$86.81 \pm 0.64\%$	$96.20 \pm 0.17\%$	$33.19 \pm 1.76\%$	$52.27 \pm 0.96\%$		
CAVIA	$87.63 \pm 0.58\%$	$94.16 \pm 0.20\%$	$34.27 \pm 1.79\%$	$50.23 \pm 0.98\%$		
DropGrad	$87.69 \pm 0.57\%$	$94.21 \pm 0.20\%$	$34.42 \pm 1.70\%$	$52.92 \pm 0.98\%$		
MR-MAML	$89.28 \pm 0.59\%$	$96.66 \pm 0.18\%$	$35.00 \pm 1.60\%$	$54.39 \pm 0.97\%$		
META-DROPOUT	$85.60 \pm 0.63\%$	$95.56 \pm 0.17\%$	$34.32 \pm 1.78\%$	$52.40 \pm 0.96\%$		
TAML	$87.50 \pm 0.63\%$	$95.78 \pm 0.19\%$	$33.16 \pm 1.68\%$	$52.78 \pm 0.97\%$		
ANIL	$88.35 \pm 0.56\%$	$95.85 \pm 0.19\%$	$34.13 \pm 1.67\%$	$52.59 \pm 0.96\%$		
ANIL-METAMIX	$92.24 \pm 0.48\%$	$98.36 \pm 0.13\%$	$37.94 \pm 1.75\%$	$59.03 \pm 0.93\%$		
ANIL-ours	$92.82 \pm 0.49\%$	$98.42 \pm 0.14\%$	$38.09 \pm 1.76\%$	$59.17 \pm 0.94\%$		
MAML	$87.40 \pm 0.59\%$	$93.51 \pm 0.25\%$	$32.93 \pm 1.70\%$	$51.95 \pm 0.97\%$		
MAML-METAMIX	$92.06 \pm 0.51\%$	$97.95 \pm 0.17\%$	$39.26 \pm 1.79\%$	$58.96 \pm 0.95\%$		
MAML-ours	$92.89 \pm 0.46\%$	$98.03 \pm 0.15\%$	$39.89 \pm 1.73\%$	$59.32 \pm 0.93\%$		
METASGD	$87.72 \pm 0.61\%$	$95.52 \pm 0.18\%$	$33.70 \pm 1.63\%$	$52.14 \pm 0.92\%$		
METASGD-METAMIX	$93.59 \pm 0.45\%$	$98.24 \pm 0.16\%$	$40.06 \pm 1.76\%$	$60.19 \pm 0.96\%$		
METASGD-OURS	$93.93 \pm 0.40\%$	$98.49 \pm 0.12\%$	$40.22 \pm 1.78\%$	$60.24 \pm 0.91\%$		
T-NET	$87.71 \pm 0.62\%$	$95.67 \pm 0.20\%$	$33.73 \pm 1.72\%$	$54.04 \pm 0.99\%$		
T-Net-MetaMix	$93.27 \pm 0.46\%$	$98.09 \pm 0.15\%$	$38.33 \pm 1.73\%$	$59.13 \pm 0.99\%$		
T-NET-OURS	$93.54 \pm 0.49\%$	$98.27 \pm 0.14\%$	$38.38 \pm 1.77\%$	$59.25 \pm 0.97\%$		

Performance of Image Classification

Table 7: Comparison with MetaMix on image classifications.

Model	Omn	iglot	MiniImagenet			
	20-way 1-shot	20-way 5-shot	5-way 1-shot	5-way 5-shot		
MAML	$87.40 \pm 0.59\%$	$93.51 \pm 0.25\%$	$32.93 \pm 1.70\%$	$51.95 \pm 0.97\%$		
MAML + MetaMix	$92.06 \pm 0.51\%$	$97.95 \pm 0.17\%$	$39.26 \pm 1.79\%$	$58.96 \pm 0.95\%$		
MAML + ours	$92.89 \pm 0.46\%$	$98.03 \pm 0.15\%$	$39.89 \pm 1.73\%$	$59.32 \pm 0.93\%$		
MAML + MetaMix + Ours	$93.02 \pm 0.68\%$	$98.07 \pm 0.22\%$	$39.92 \pm 1.77\%$	$59.37 \pm 0.95\%$		

Thank You!