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‣ Backdoor Detection
 Evaluate over 1600 transformer models on 3 NLP tasks

 Our method can have  >90% detection accuracy
 Compare with 5 baseline methods

‣ Backdoor Removal
 Evaluate on 3 advanced NLP backdoor attacks
 Our method can reduce ASR down to 0.9% with 1% clean 
accuracy degradation
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Questions?

Scan to see our code


