ICML 2022

Improved StyleGAN-v2 based Inversion for Out-of-Distribution Images

Rakshith Subramanyam (ASU)

Vivek Narayanaswamy (ASU)

Mark Naufel (ASU)

Andreas Spanias (ASU)

Jayaraman J. Thiagarajan (LLNL)

Pre-trained StyleGANs have Emerged as Powerful Priors for Solving In-Domain Image Restoration

GAN Inversion

Ill-posed problem of inferring a latent code for a given image using a pretrained generator (e.g., StyleGAN).

Mathematically,

$$w_*^+ = \arg\min_{w^+} \mathcal{L}(x, G(w^+)) + \mathcal{R}(G(w^+))$$

$$\underset{\text{MSE|LPIPS}}{\text{MSE|LPIPS}} \text{Regularizer}$$

Inversion

Semantic Editing (Age)

Image Denoising

Innately Leveraging Such Priors for Inverting Out-of-Distribution Images is Significantly Challenging

Input

 $\mathcal{W}+$

28.9 dB / 0.23 PSNR/LPIPS

Inversion of out-of-distribution (OOD) images on to the $\mathcal{W}+$ latent space of a pretrained StyleGAN generator produces low fidelity reconstructions

Solutions introduce in-domain artifacts to the reconstructed images!

Why is such an optimization non-trivial?

- Lack of known priors in W+ to regularize the inversion
- Non-robust W+ space optimization Inverted latent codes are <u>sensitive to minor</u> <u>perturbations</u> producing perceptually inferior reconstructions

SPHInX – <u>StyleGAN</u> with <u>Projection Head for Inverting X</u> A Novel Strategy for Robust StyleGAN Inversion of OOD Images

Central Ideas Behind SPHInX

• SPHInX replaces the existing mapping network f with a style projection head \mathcal{P}_s

Enc. Multi-Dec. \rightarrow <u>Decouples</u> different layers in the W+ space

■ SPHInX transforms any $z^+ \sim P(\mathcal{Z})$ to P(W+) such that <u>every</u> realization from P(W+) produces the same reconstruction.

Vicinal regularization that produces a robust estimate of P(W+)

SPHInX improves the fidelity of OOD Inversion

SPHInX can repurpose existing StyleGAN attributes to support semantic editing for aligned OOD

SPHInX Optimizes Additional StyleGAN Latent Codes to Enhance Restoration Fidelity of Complex OOD Images

In addition to Ps, SPHInX optimizes S (realized via a content projection head Pc) and noise B

S: Captures the semantic structure of images

B: Improves overall textural quality

Inversion Reconstruction

SPHInX produces significant improvements in perceptual quality and fidelity

Semantic Interpolation b/w Two Images

SPHInX synthesizes meaningful interpolations even for OOD images for which existing StyleGAN attributes cannot be adopted!

SPHInX Can Repurpose StyleGANs Pre-trained on FFHQ for Ill-posed Restoration of Novel Domains with Scarce Data Access

While improving denoising, SPHInX effectively <u>preserves</u> <u>image specific semantics</u>

Application 2: Compressed Sensing

Compressed recovery with 1% measurement factor

SPHInX produces <u>high-fidelity reconstructions even</u> at severe compression factors

Thank You

https://github.com/Rakshith-2905/SPHInX

References

- [1] Abdal, R., Qin, Y., and Wonka, P. Image2stylegan: How to embed images into the stylegan latent space? In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4432–4441, 2019
- [2] Abdal, R., Qin, Y., and Wonka, P. Image2stylegan++: How to edit the embedded images? In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8296–8305, 2020
- [3] Daras, G., Dean, J., Jalal, A., and Dimakis, A. G. Intermediate layer optimization for inverse problems using deep generative models. arXiv preprint arXiv:2102.07364, 2021.
- [4] Kang, K., Kim, S., and Cho, S. Gan inversion for out-ofrange images with geometric transformations. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 13941–13949, 2021.
- [5] Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., and Aila, T. Analyzing and improving the image quality of stylegan. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8110–8119, 2020.
- [6] Wang, T., Zhang, Y., Fan, Y., Wang, J., and Chen, Q. Highfidelity gan inversion for image attribute editing. arXiv preprint arXiv:2109.06590, 2021.