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Our Contributions

« Develop CNNs with sparse coding frontends called LCANets

« Competitive clean accuracy on action and image recognition

« SOTA robustness to corruptions and noise

- Perform first attacks with full knowledge of a sparse coding CNN layer

« Show how LCA frontends can augment robustness of adversarial training
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Current CNNs Are Less Robust Than Biological Vision

- CNNs are often viewed as a rough model of biological object recognition [l
- Previous work developed CNNs with biologically-motivated frontends 2!
— Required collection and analysis of neurophysiological recordings

— Left out sparsity and lateral competition observed in V1 3.4
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Sparse Coding CNN Layers

- Sparsity has been theorized to increase robustness of CNN layers [1. 2

- Sparse coding frontends have been used to filter out noise and adversarial

attacks computed on standard CNNs [2 3. 4. 9]
- Encode and reconstruct input image before classification by the CNN
- Attacks had no or little knowledge of sparse coding layer

- Not much comparison to other robust methods
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Standard CNN Architecture
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LCANet Architecture
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u(t) evolves over time

Charged up/down by feature
alignment with input

Inhibited by neighboring active
neurons

Thresholded to compute sparse
code



LCANet Architecture

Unsupervised Pre-Training
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LCANet Architecture

Unsupervised Pre-Training

Standard Backpropagation
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Tasks

« Action Recognition
- UCF-101
- HMDB-51

- Image Recognition
- CIFAR-10
- CIFAR-10-C
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LCANets Are Robust to Corruptions
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LCANets Are Robust to Corruptions
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LCANets Are Robust to Corruptions
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LCANets Are Robust to Corruptions
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LCANets Are Competitive Under a Black-Box Attack
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LCANets Are Competitive Under a Black-Box Attack
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LCANets Are Competitive Under a Black-Box Attack
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LCANets Are Competitive Under a Black-Box Attack
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LCANets Are Not Robust to a Full White-Box Attack
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LCANets Are Not Robust to a Full White-Box Attack
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LCANets Are Not Robust to a Full White-Box Attack
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LCANets Are Not Robust to a Full White-Box Attack
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LCA Frontends Can Augment Adversarial Training
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LCA Frontends Can Augment Adversarial Training
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LCA Frontends Can Augment Adversarial Training
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