

Optimal Estimation of Policy Gradient via Double Fitted Iteration

Chengzhuo Ni¹, Ruiqi Zhang², Xiang Ji¹, Xuezhou Zhang¹, and Mengdi Wang¹

¹Department of Electrical and Computer Engineering, Princeton University

²School of Mathematical Science, Peking University

Markov Decision Process

- $\mathcal{M} = (\mathcal{S}, \mathcal{A}, p, r, \xi, H);$

$$s_1 \sim \xi, \quad s_{h+1} \sim p_h(\cdot | s_h, a_h)$$

- Policy: $\pi : \mathcal{S} \times [H] \rightarrow \Delta_{\mathcal{A}};$
- Goal: Find the policy π to maximize $v^\pi := \mathbb{E}^\pi \left[\sum_{h=1}^H r_h(s_h, a_h) \right];$
- Policy Gradient
 - Assume the policy has some parameterized form $\pi_\theta;$

$$J(\theta) := \mathbb{E}^{\pi_\theta} \left[\sum_{h=1}^H r_h(s_h, a_h) \right].$$

- **Problem:** Given a batch data \mathcal{D} generated by some behavior policy $\bar{\pi}$, can we get a good estimation of $\nabla_\theta J(\theta)$?

Our Contributions

We proposed an off-policy policy gradient estimator based on double fitted iteration.

Previous works:

- The estimation error depends on the distribution shift

$\max_{s \in \mathcal{S}, a \in \mathcal{A}, h \in [H]} \frac{\mu_h^{\pi_\theta}(s, a)}{\mu_h^\pi(s, a)}$, where μ_h^π is the density function under policy π .

We improved the dependency to $\text{poly}(H) \max_{h \in [H]} \mathbb{E}^{\pi_\theta} \left[\frac{\mu_h^{\pi_\theta}(s, a)}{\mu_h^\pi(s, a)} \right]$

- Require a known behavior policy $\bar{\pi}$.

We don't require a known $\bar{\pi}$.

- Only apply to the tabular MDP setting.

We consider MDP with linear features.

Approach

Suppose there is a function class \mathcal{F} , define

$$(\mathcal{P}_{\theta,h} f)(s, a) = \mathbb{E}^{\pi_\theta} [f(s_{h+1}, a_{h+1}) | s_h = s, a_h = a],$$

$$Q_h^\theta(s, a) = \mathbb{E}^{\pi_\theta} \left[\sum_{h'=h}^H r_h(s_h, a_h) | s_h = s, a_h = a \right].$$

- Policy Gradient Bellman Equation:

$$Q_h^\theta = r_h + \mathcal{P}_{\theta,h} Q_{h+1}^\theta, \quad \nabla_\theta Q_h^\theta = \mathcal{P}_{\theta,h} \left((\nabla_\theta \log \Pi_{\theta,h}) Q_{h+1}^\theta + \nabla_\theta Q_{h+1}^\theta \right),$$

where $((\nabla_\theta \log \Pi_{\theta,h}) f)(s, a) = (\nabla_\theta \log \pi_{\theta,h}(a|s)) f(s, a)$.

- Fitted PG Estimation:

$$\widehat{Q}_h^\theta = \arg \min_{f \in \mathcal{F}} \left[\sum_{k=1}^K \left(f(s_h^{(k)}, a_h^{(k)}) - r_h^{(k)} - \int_{\mathcal{A}} \pi_{\theta,h+1} \left(a' | s_{h+1}^{(k)} \right) \widehat{Q}_{h+1}^\theta \left(s_{h+1}^{(k)}, a' \right) da' \right)^2 + \lambda \rho(f) \right]$$

$$\begin{aligned} \widehat{\nabla_\theta^j Q_h^\theta} &= \arg \min_{f \in \mathcal{F}} \left[\sum_{k=1}^K \left(f(s_h^{(k)}, a_h^{(k)}) - \int_{\mathcal{A}} \pi_{\theta,h+1} \left(a' | s_{h+1}^{(k)} \right) \left((\nabla_\theta^j \log \pi_{\theta,h+1} \left(a' | s_{h+1}^{(k)} \right)) \widehat{Q}_{h+1}^\theta \left(s_{h+1}^{(k)}, a' \right) \right. \right. \right. \right. \\ &\quad \left. \left. \left. \left. + \widehat{\nabla_\theta^j Q_{h+1}^\theta} \left(s_{h+1}^{(k)}, a' \right) \right) da' \right)^2 + \lambda \rho(f) \right] \end{aligned}$$

Theoretical Guarantees

- $\mathcal{F} = \{\phi(\cdot, \cdot)^\top w | w \in \mathbb{R}^d\}$ with state-action feature $\phi : \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}^d$;
- $\Sigma_h := \mathbb{E} \left[\phi \left(s_h^{(1)}, a_h^{(1)} \right) \phi \left(s_h^{(1)}, a_h^{(1)} \right)^\top \right], \nu_h^\theta = \mathbb{E}^{\pi_\theta} [\phi(s_h, a_h)];$
- $\|\nabla_\theta \pi_{\theta, h}(a|s)\|_\infty \leq G, \forall s, a, h.$

Theorem (Finite Sample Guarantee)

Under certain conditions, with high probability, we have

$$\left\| \widehat{\nabla_\theta J}(\theta) - \nabla_\theta J(\theta) \right\|_\infty \leq \tilde{\mathcal{O}} \left(\sqrt{\frac{H^5 G^2}{K}} \max_{h \in [H]} \left\| \Sigma_h^{-\frac{1}{2}} \nu_h^\theta \right\| \right).$$

For the tabular case,

$$\left\| \widehat{\nabla_\theta J}(\theta) - \nabla_\theta J(\theta) \right\|_\infty \leq \tilde{\mathcal{O}} \left(\sqrt{\frac{H^5 G^2}{K}} \max_{h \in [H]} \mathbb{E}^{\pi_\theta} \left[\frac{\mu_h^{\pi_\theta}(s, a)}{\mu_h^{\bar{\pi}}(s, a)} \right] \right).$$

Experiments

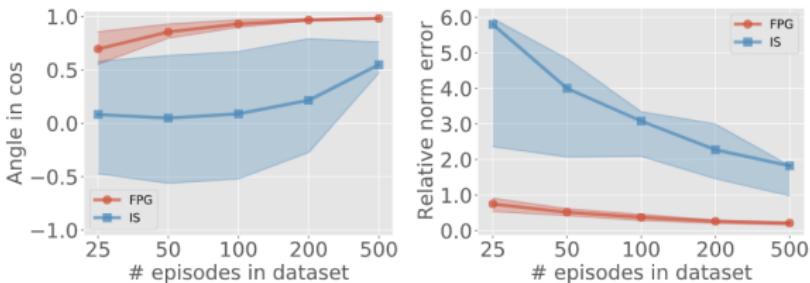


Figure 1: **Sample efficiency of FPG on off-policy data.** The off-policy PG estimation accuracy is evaluated using two metrics: $\cos \angle(\widehat{\nabla_\theta v_\theta}, \nabla_\theta v_\theta)$ and the relative error norm $\frac{\|\widehat{\nabla_\theta v_\theta} - \nabla_\theta v_\theta\|}{\|\nabla_\theta v_\theta\|}$.

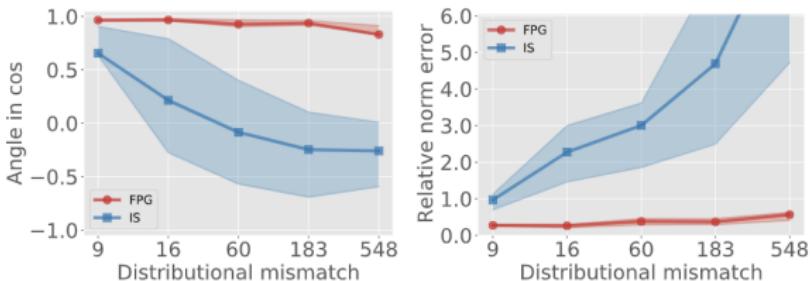


Figure 2: **Tolerance to off-policy distribution shift.** The distributional mismatch is measured by $\text{cond}(\bar{\Sigma}^{\frac{1}{2}} \Sigma^{-1} \bar{\Sigma}^{\frac{1}{2}})$, where Σ is the data covariance and $\bar{\Sigma}$ is the target policy's occupancy measure.