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Motivation

Transfer to new environments presents uncertainty, i.e., over the context
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Motivation

Agent'’s initial estimate of the context differs across environments
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Multi-Set Robustness Problem

Robust RL: robustness with respect to a single perturbation set
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Multi-Set Robustness Problem

Multi-task RL: generalization to new contexts
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Multi-Set Robustness Problem

Multi-set robust RL: generalization to new perturbation sets over contexts
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Challenges with System Identification
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Challenges with System Identification

Context identifiability: many systems are determined by parameters that are difficult to
identify from limited interaction (Dorfman & Tamar 2020)

Peg size can be inferred only when robot has tried
inserting into one of the boxes

Controller gain can be inferred within a few steps
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Challenges with System Identification

Context identifiability: many systems are determined by parameters that are difficult to
identify from limited interaction (Dorfman & Tamar 2020)

Critical contexts: Some unidentifilable parameters are critical to the task = act robustly, i.e.,
with respect to the worst case, under uncertainty



Probabilistic System Identification

Estimate posterior distribution with ensemble of models model 1
b(c) prior b'(c|b, h) posterior model 2
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Risk-Sensitive Policy Optimization

Derive uncertainty set and optimize policy to maximize the CVaR return
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Risk-Sensitive Policy Optimization

Derive uncertainty set and optimize policy to maximize the CVaR return

b(c) prior b'(c|b, h) posterior
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System Identification & Risk-Sensitive Adaptation



Experiments: Main Results

Halfheeh

Point Mass Minitaur Sawyer Peg

Method Sample Min

Ensemble 36.8 £0.3 Ensemble 178.0+ 7.1 Ensemble 3988 £ 75 Ensemble 45.2 + 3.0
System ID 37.6 £0.3 SystemID 174.0 £10.8 System ID 3774 + 318  System ID 73.71+ 4.3
EPOpt 36.3+ 0.6 EPOpt 172.2+7.3 EPOpt 2272+ 218 EPOpt 43.2 1+ 54
Set-EPOpt 37.1£0.5 Set-EPOpt 183.1 £7.5 Set-EPOpt 3806 + 224  Set-EPOpt 70.6 £ 3.6
WCPG 34.8+0.6 WCPG 165.5+17.7 WCPG 3747+ 229 WCPG 33.8 L 7.2

t-WCPG 347 +07  Set WCPG 17454100 Set. WCPG 3871 4207 Set WCPG
I SIRSA (Ours) 37.9+£0.2 SIRSA (Ours) 187.8+7.6 SIRSA (Ours) 4146 112 SIRSA (Ours) 83.4+4.5 I

Oracle 38.6 £ 0.3 Oracle 172.2+£4.1  Oracle 4246 £59  Oracle 78.24+ 3.6



Experiments: Main Results

Set-EPOpt System ID SIRSA
(Rajeswaran et al., 2016) (Yuetal., 2017) (Ours)

*final frame of each trial



Experiments: Generalization under Non-Stationarity
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Experiments: Misspecified Initial Uncertainty Sets

Performance vs Distance from Prior
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Takeaways

e Introduced multi-set robustness as a more flexible & general setup for robust RL

e Designed a framework that combines probabilistic system identification with the
multi-set robust RL objective

e Future work may tackle the setting where the context is not observed at training time



