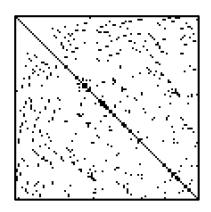
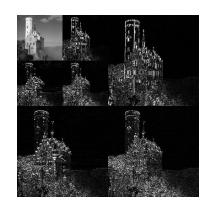
Hardness and Algorithms for Sparse Optimization

Eric Price UT Austin Sandeep Silwal MIT Samson Zhou CMU

What is this paper about?

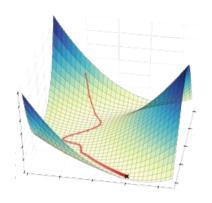
- > Sparsity in data is a natural pattern
- Study optimization problems with sparsity constraints

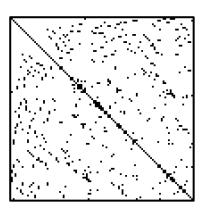


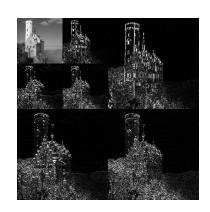


What is this paper about?

- Sparsity in data is a natural pattern
- Study optimization problems with sparsity constraints







What is the paper about?

- ➤ Lower bounds and reductions between natural sparse optimization problems
- Unified approach to upper bound algorithms for sparse optimization problems

What is the paper about?

- ➤ Lower bounds and reductions between natural sparse optimization problems
- Unified approach to upper bound algorithms for sparse optimization problems

 \triangleright **Sparse regression:** "Find a k-sparse solution to Ax = b"

 \triangleright **Sparse regression:** "Find a k-sparse solution to Ax = b"

Given A in $R^{n \times d}$, b in R^n , and integer k, find x with $\|x\|_0 \le k$ to minimize $\|Ax-b\|_2$

Sparse regression: "Find a k-sparse solution to Ax = b"

Given A in $R^{n \times d}$, b in R^n , and integer k, find x with $\|x\|_0 \le k$ to minimize $\|Ax-b\|_2$

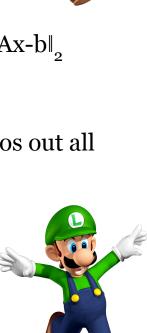
Robust regression: "Choose k constraints to ignore in Ax = b"

Sparse regression: "Find a k-sparse solution to Ax = b"

Given A in $R^{n \times d}$, b in R^n , and integer k, find x with $\|x\|_0 \le k$ to minimize $\|Ax-b\|_2$

Robust regression: "Choose k constraints to ignore in Ax = b"

Find subset T of size \leq k and x to minimize $\|(Ax-b)_T\|_2$ where $(Ax-b)_T$ zeros out all coordinates in T



 \triangleright **Sparse regression:** "Find a k-sparse solution to Ax = b"

Given A in $R^{n \times d}$, b in R^n , and integer k, find x with $\|x\|_0 \le k$ to minimize $\|Ax-b\|_2$

 \triangleright Robust regression: "Choose k constraints to ignore in Ax = b"

Find subset T of size \leq k and x to minimize $\| (Ax-b)_T \|_2$ where $(Ax-b)_T$ zeros out all coordinates in T

Very related problems: We show robust regression reduces to sparse regression!

We give a common algorithmic approach for sparse and robust regression (and other problems)

Based on "Meet in the Middle"

We give a common algorithmic approach for sparse and robust regression (and other problems)

Based on "Meet in the Middle"

- \triangleright Consider sparse regression: "Find a k-sparse x to solve Ax = b"
- > Suppose there exists y with $\|y\|_0 = k$ with Ay = b (Realizable case)

We give a common algorithmic approach for sparse and robust regression (and other problems)

Based on "Meet in the Middle"

- \triangleright Consider sparse regression: "Find a k-sparse x to solve Ax = b"
- > Suppose there exists y with $\|y\|_0 = k$ with Ay = b (Realizable case)

Brute force algorithm: Guess support of y: roughly $\mathbf{d}^{\mathbf{k}}$ time where A in $\mathbb{R}^{n \times d}$

Prior work: work very hard to get roughly $\sim d^{k-1}$ time (Har-Peled, Indyk, Mahabadi '18)

We give a common algorithmic approach for sparse and robust regression (and other problems)

Based on "Meet in the Middle"

- \triangleright Consider sparse regression: "Find a k-sparse x to solve Ax = b"
- > Suppose there exists y with $\|y\|_0 = k$ with Ay = b (Realizable case)

Brute force algorithm: Guess support of y: roughly $\mathbf{d}^{\mathbf{k}}$ time where A in $\mathbb{R}^{n \times d}$

Prior work: work very hard to get roughly $\sim d^{k-1}$ time (Har-Peled, Indyk, Mahabadi '18)

Our result: $\sim d^{k/2}$ time.

We give a common algorithmic approach for sparse and robust regression (and other problems)

Based on "Meet in the Middle"

- \triangleright Consider sparse regression: "Find a k-sparse x to solve Ax = b"
- > Suppose there exists y with $\|y\|_0 = k$ with Ay = b (Realizable case)
- (1) Enumerate over all k/2 sparse z and compute Az
- (2) Check if there exists k/2 sparse z' such that Az' = b-Az
- (3) Output z'+z as solution

Only ~ $d^{k/2}$ cost!

We give a common algorithmic approach for sparse and robust regression (and other problems)

Based on "Meet in the Middle"

- \triangleright Consider sparse regression: "Find a k-sparse x to solve Ax = b"
- > Suppose there exists y with $\|y\|_0 = k$ with Ay = b (Realizable case)
- (1) Enumerate over all k/2 sparse z and compute Az \leftarrow Enumerate over net
- (2) Check if there exists k/2 sparse z' such that Az' = b-Az
- (3) Output z'+z as solution

Only ~ $d^{k/2}$ cost!

We give a common algorithmic approach for sparse and robust regression (and other problems)

Based on "Meet in the Middle"

- Consider sparse regression: "Find a k-sparse x to solve Ax = b"
- Suppose there exists y with $\|y\|_0 = k$ with Ay = b (Realizable case)
- (1) Enumerate over all k/2 sparse z and compute Az Enumerate over net
- Check for z' using nearest Check if there exists k/2 sparse z' such that Az' = b-Az(2)neighbor data structure on $\{Az\}$
- Output z'+z as solution (3)

Only ~ $d^{k/2}$ cost!

We give a common algorithmic approach for sparse and robust regression (and other problems)

Theorem 1.4. Given $A \in \mathbb{R}^{n \times d}$ and $b \in \mathbb{R}^n$ such that there exists a k-sparse vector x satisfying Ax = b, there exists an algorithm that returns a k-sparse vector $z \in \mathbb{R}^d$ satisfying $||Az - b||_2 \le \varepsilon$ in time

$$\min_{c \ge 1} O\left(nk \cdot \left(\frac{12c \cdot d \cdot ||b||_2}{\varepsilon}\right)^{\frac{k}{2} \cdot (1+1/(2c^2-1))}\right).$$

We give a common algorithmic approach for sparse and robust regression (and other problems)

Theorem 1.4. Given $A \in \mathbb{R}^{n \times d}$ and $b \in \mathbb{R}^n$ such that there exists a k-sparse vector x satisfying Ax = b, there exists an algorithm that returns a k-sparse vector $z \in \mathbb{R}^d$ satisfying $||Az - b||_2 \le \varepsilon$ in time

$$\min_{c \ge 1} O\left(nk \cdot \left(\frac{12c \cdot d \cdot \|b\|_2}{\varepsilon}\right)^{\frac{k}{2} \cdot (1 + 1/(2c^2 - 1))}\right).$$

Similar improvement for robust regression $(n^k \rightarrow n^{k/2})$

Other results

Upper bounds:

➤ Sparse PCA problem: "Find a k sparse unit vector u to maximize u^TAu"

Lower bounds side:

- ➤ Bicriteria hardness for sparse regression: "Problem still hard even if we relax sparsity and approximation constraints"
- \succ Fine grained hardness for robust regression: Evidence of $n^{k/2}$ hardness for robust regression

Thank you!

Please see our paper for full details!

