Conditional GANs with Auxiliary Discriminative Classifier

¹Institute of Computing Technology, Chinese Academy of Sciences

²University of Chinese Academy of Sciences

 $^3 {\sf Shanghai}$ Jiao Tong University

Research Problem

Conditional generative adversarial networks (GANs) aim at learning the joint distribution $P_{X,Y}$ of data $x \in \mathcal{X}$ and labels $y \in \mathcal{Y}$ for conditional data generation.

$$Q_{X,Y} \approx P_{X,Y},\tag{1}$$

with $Q_{X,Y} = G_{\sharp}(P_Z \times P_Y)$ denoting the generated joint data-label distribution.

Implement a class-conditional generator $G: \mathcal{Z} \times \mathcal{Y} \to \mathcal{X}$

conditional batch normalization (de Vries et al., 2017).

Train the class-conditional generator

conditional discriminator (Mirza & Osindero, 2014; Miyato & Koyama, 2018) or auxiliary classifier (Gong et al., 2019; Odena et al., 2017).

Related Method

The common AC-GAN (Odena et al., 2017) uses an auxiliary classifier to train the generator but suffers from the low intra-class diversity issue of the generated samples.

$$\max_{D,C} V(G,D) + \lambda \cdot (\mathbb{E}_{x,y \sim P_{X,Y}}[\log C(y|x)]), \tag{2}$$

$$\min_{G} V(G, D) - \lambda \cdot (\mathbb{E}_{x, y \sim Q_{X, Y}}[\log C(y|x)]), \tag{3}$$

where V(G, D) denotes the adversarial game between the discriminator and generator.

The optimal classifier

$$C^*(y|x) = \frac{p(x,y)}{p(x)}$$
. [ISSUE] C^* is NOT aware of $Q_{X,Y}$.

Learning objective for the generator under the optimal discriminator and classifier $\min_G \operatorname{JS}(Q_X || P_X) + \lambda \cdot (\operatorname{KL}(Q_{X,Y} || P_{X,Y}) - \operatorname{KL}(Q_X || P_X) + H_Q(Y |X)).$

Related Method

The original AC-GAN (Odena et al., 2017) still suffers from the same issue.

$$\max_{D,C} V(G,D) + \lambda \cdot (\mathbb{E}_{x,y \sim P_{X,Y}}[\log C(y|x)] + \mathbb{E}_{x,y \sim Q_{X,Y}}[\log C(y|x)]), \tag{4}$$

$$\min_{G} V(G, D) - \lambda \cdot (\mathbb{E}_{x, y \sim Q_{X, Y}}[\log C(y|x)]). \tag{5}$$

The optimal classifier

$$C^*(y|x) = \frac{p(x,y) + q(x,y)}{p(x) + q(x)}$$
. [ISSUE] C^* is NOT distinguished between $P_{X,Y}$ and $Q_{X,Y}$.

Learning objective for the generator under the optimal discriminator and classifier $\min_G \operatorname{JS}(Q_X || P_X) + \lambda \cdot (\operatorname{KL}(Q_{X,Y} || P_{X,Y}) - \operatorname{KL}(Q_X || P_X) + H_Q(Y|X))$ when Q = P.

Proposed Method

We propose an auxiliary discriminative classifier $C_d: \mathcal{X} \to \mathcal{Y}^+ \cup \mathcal{Y}^-$ that classifies the real and generated data with different class-labels for GANs (called ADC-GAN).

$$\max_{D,C} V(G,D) + \lambda \cdot (\mathbb{E}_{x,y \sim P_{X,Y}}[\log C_{d}(y^{+}|x)] + \mathbb{E}_{x,y \sim Q_{X,Y}}[\log C_{d}(y^{-}|x)]),$$
 (6)

$$\min_{G} V(G, D) - \lambda \cdot (\mathbb{E}_{x, y \sim Q_{X, Y}}[\log C_{\mathrm{d}}(y^{+}|x)] - \mathbb{E}_{x, y \sim Q_{X, Y}}[\log C_{\mathrm{d}}(y^{-}|x)]). \tag{7}$$

The optimal discriminative classifier

 $C_{\mathrm{d}}^*(y^+|x) = \frac{p(x,y)}{p(x)+q(x)}$, $C_{\mathrm{d}}^*(y^-|x) = \frac{q(x,y)}{p(x)+q(x)}$. C_{d}^* is aware of and distinguishes between $P_{X,Y}$ and $Q_{X,Y}$ so that it can provide the difference between them to the generator.

Learning objective for the generator under the optimal discriminator and classifier $\min_G \operatorname{JS}(Q_X || P_X) + \lambda \cdot \operatorname{KL}(Q_{X,Y} || P_{X,Y})$.

Competing Methods

- ▶ TAC-GAN (Gong et al., 2019): twin auxiliary classifiers $C: \mathcal{X} \to \mathcal{Y}$ trained on $P_{X,Y}$ and $C_{\min}: \mathcal{X} \to \mathcal{Y}$ trained on $Q_{X,Y}$.
- ▶ PD-GAN (Miyato & Koyama, 2018): projection discrimnator $D_p: \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$.

Table: Learning objective for the generator under the optimal discriminator and classifier.

Method	Theoretical learning objective for the generator
AC-GAN	$\operatorname{JS}(P_X Q_X) + \lambda \cdot (\operatorname{KL}(Q_{X,Y} P_{X,Y}) - \operatorname{KL}(Q_X P_X) + H_Q(Y X))$
TAC-GAN	$JS(P_X Q_X) + \lambda \cdot (KL(Q_{X,Y} P_{X,Y}) - KL(Q_X P_X))$
ADC-GAN	$\mathrm{JS}(P_X\ Q_X) + \lambda \cdot (\mathrm{KL}(Q_{X,Y}\ P_{X,Y}))$
PD-GAN	$\mathrm{JS}(Q_{X,Y}\ P_{X,Y})$

Experimental Results

Figure: Qualitative comparison of distribution learning results on the synthetic data.

Experimental Results

Table: FID (\downarrow) and Intra-FID (\downarrow) (generation quality) and Accuracy (\uparrow) (representation quality) comparisons on CIFAR-10, CIFAR-100, and Tiny-ImageNet, respectively.

Datasets	Metrics	PD-GAN	AC-GAN	TAC-GAN	ADC-GAN
	FID	6.23	6.50	5.83	5.66
CIFAR-10	Intra-FID	48.90	57.67	56.67	40.45
	Accuracy	66.22	84.69	88.27	89.51
	FID	8.70	11.24	10.38	8.12
CIFAR-100	Intra-FID	51.15	83.06	79.59	49.24
	Accuracy	37.89	55.26	60.03	64.24
	FID	26.10	25.02	21.12	19.02
Tiny-ImageNet	Intra-FID	66.23	99.04	95.48	63.05
	Accuracy	27.79	44.59	44.44	48.89

Experimental Results

Figure: (a,b,c) show the training FID curve. (e,f,g) show the FID of objective function $(1-\lambda)V(G,D) + \lambda V(G,C)$ with different λ . (d,h) show the TSNE of D/C on CIFAR-10.

Summary

We propose ADC-GAN, a novel conditional generative adversarial network with an auxiliary discriminative classifier, for faithful conditional generative modeling.

We theoretically analyze that the generator of ADC-GAN can faithfully learn the joint distribution even without the discriminator, making the proposed ADC-GAN

- robust to the value of the coefficient hyperparameter λ .
- robust to the selection of the GAN loss V(G, D).
- stable during training.

Thank you for your attention! Please check out our paper for more details.