Conditional GANs with Auxiliary Discriminative Classifier
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Research Problem

Conditional generative adversarial networks (GANs) aim at learning the joint
distribution Px y of data x € X’ and labels y € Y for conditional data generation.

Qx.y =~ Px,y, (1)

with Qx y = Gy(Pz x Py) denoting the generated joint data-label distribution.

Implement a class-conditional generator G : Z x Y — X
» conditional batch normalization (de Vries et al., 2017).
Train the class-conditional generator

» conditional discriminator (Mirza & Osindero, 2014; Miyato & Koyama, 2018) or
auxiliary classifier (Gong et al., 2019; Odena et al., 2017).



Related Method

The common AC-GAN (Odena et al., 2017) uses an auxiliary classifier to train the
generator but suffers from the low intra-class diversity issue of the generated samples.

max V(G D) + A (Ex,mpy y llog C(y1)]), 2)
min V(G, D) = A (Exy-ay v [og Cy 1)) (3)

where V(G, D) denotes the adversarial game between the discriminator and generator.

The optimal classifier
C*(y|x) = p(x’y . [ISSUE] C* is NOT aware of Qx y.

Learning objective for the generator under the optimal discriminator and classifier
ming JS(Qx||Px) + A - (KL(Qx,v [ Px,v) — KL(Qx||Px) + Ho(Y[X)).



Related Method

The original AC-GAN (Odena et al., 2017) still suffers from the same issue.

max V(G, D) + A+ (Exy~py y[log C(y[x)] + Ex y~ax .y [log Cy (X)), (4)
min V(G, D) = A~ (Exy~qx,y [log C(y(x)])- (5)

The optimal classifier

C*(y|x) = PEMa) [ISSUE] C* is NOT distinguished between Px y and Qx,y-

Learning objective for the generator under the optimal discriminator and classifier
ming JS(QXupx) + A (KL(QX7yHPX7y) — KL(Qx“Px) + HQ(Y‘X)) when Q = P.



Proposed Method

We propose an auxiliary discriminative classifier Cy : X — YT U Y~ that classifies the
real and generated data with different class-labels for GANs (called ADC-GAN).

max V(G, D) + A (Exyepy 08 Caly )] + Exyay g Caly ), (6)
min V(G, D) = A+ (Exy-q [0g Ca(y " 1x)] — Exymyy log Caly XD (7)

The optimal discriminative classifier

Cilyt|x) = p(igigzx), Cily |x) = p(zgi}ézx). C; is aware of and distinguishes between

Px y and Qx. y so that it can provide the difference between them to the generator.

Learning objective for the generator under the optimal discriminator and classifier
ming JS(QXan) + A KL(QX7y”PX7y).



Competing Methods

» TAC-GAN (Gong et al., 2019): twin auxiliary classifiers C : X — ) trained on
Px y and Cy;: X — Y trained on Qx.y.

» PD-GAN (Miyato & Koyama, 2018): projection discrimnator D, : X x Y — R.

Table: Learning objective for the generator under the optimal discriminator and classifier.

Method Theoretical learning objective for the generator

AC-GAN  JS(Px||@x) + A - (KL(Qx,v [|Px,v) — KL(Qx||Px) + Ho(Y|X))
TAC-GAN  JS(Px||@x) + A - (KL(Qx,v| Px,v) — KL(Qx| Px))
ADC-GAN  JS(Px||@x) + A - (KL(Qx,v[|Px,v))

PD-GAN  JS(Qx.v | Px.v)




Experimental Results

(b) AC-GAN w/o D (c) TAC-GAN w/o D (d) ADC-GAN w/o D

(e) PD-GAN (f) ACCGAN w/ D (g) TAC-GAN w/ D (h) ADC-GAN w/ D

Figure: Qualitative comparison of distribution learning results on the synthetic data.



Experimental Results

Table: FID ({) and Intra-FID ({) (generation quality) and Accuracy (1) (representation quality)
comparisons on CIFAR-10, CIFAR-100, and Tiny-ImageNet, respectively.

Datasets Metrics PD-GAN AC-GAN TAC-GAN ADC-GAN
FID 6.23 6.50 5.83 5.66
CIFAR-10 Intra-FID 48.90 57.67 56.67 40.45
Accuracy 66.22 84.69 88.27 89.51
FID 8.70 11.24 10.38 8.12
CIFAR-100 Intra-FID 51.15 83.06 79.59 49.24
Accuracy 37.89 55.26 60.03 64.24
FID 26.10 25.02 21.12 19.02
Tiny-ImageNet Intra-FID 66.23 99.04 95.48 63.05

Accuracy 27.79 4459 44.44 48.89




Experimental Results

(b) CIFAR-100 (c¢) Tiny-ImageNet (d) PD-GAN
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(e) CIFAR-10 (f) CIFAR-100 (g) Tiny-ImageNet (h) ADC-GAN

Figure: (a,b,c) show the training FID curve. (e,f,g) show the FID of objective function
(1 =XN)V(G,D)+ AV(G, C) with different A. (d,h) show the TSNE of D/C on CIFAR-10.



Summary

We propose ADC-GAN, a novel conditional generative adversarial network with an
auxiliary discriminative classifier, for faithful conditional generative modeling.

We theoretically analyze that the generator of ADC-GAN can faithfully learn the joint
distribution even without the discriminator, making the proposed ADC-GAN

» robust to the value of the coefficient hyperparameter A.
» robust to the selection of the GAN loss V(G, D).
> stable during training.

Thank you for your attention!
Please check out our paper for more details.



