ICML | 2022

A Parametric Class of Approximate Gradient Updates for Policy Optimization

Presenter:

Ramki Gummadi Google Research

Joint work with:

Saurabh Kumar Junfeng Wen

Introduction

A novel gradient perspective on several objectives in RL enabling:

Conceptual insights

New relationships between classical algorithms:

- Policy Gradients
- Q-learning
- Other surrogate objectives with off-policy corrections

Practical algorithms

A parametric class of update rules that:

- Recovers classical baselines as special cases.
- Enables efficient search over a structured space of updates.
- Delivers gains on both final returns and speed of convergence.

Gradient Updates: Form-Axis Variants

Let Δ_r be the "prediction error"

For 1-Step Q-learning, Bellman error

$$\Delta_r \triangleq \mathcal{T}^* Q^{\pi}(s, a) - Q_{\theta}(s, a)$$

For PG, Monte-Carlo prediction wrt policy logits

$$\Delta_r \triangleq \sum_{t=0}^{\infty} \gamma^t \hat{r}_t - Q_{\theta}(s, a)$$

Both definitions match for bandits

<u>Theorem</u>: Consider a state-action baseline equal to the policy logits. Then, we can contrast the unbiased gradient estimate as;

$$-\widehat{\nabla_{\theta} L^{QL}}(s, a) = \Delta_r \nabla_{\theta} Q_{\theta}(s, a)$$

Bias correction term for policy logit baseline.

$$-\widehat{\nabla_{\theta} L^{PG}}(s, a) = \Delta_r \left(\nabla_{\theta} Q_{\theta}(s, a) - \left[\mathbb{E}_{u \sim \pi_{\theta}(.|s)} \nabla_{\theta} Q_{\theta}(s, u) \right] + \left[\nabla_{\theta} \mathbb{E}_{u \sim \pi_{\theta}(.|s)} \widehat{Q}_{\theta}(s, u) \right] \right)$$

No dependence on data in either term!

Off-policy Corrected Scale-Axis Variant

From each sample, (s, a, r, z), the gradients depend on two scalar *learning signals*:

$$\Delta_r \triangleq \hat{r}_{target} - Q_{\theta}(s, a) \qquad \Longrightarrow$$

$$\Delta_O \triangleq \log \frac{\pi_{\theta}(a|s)}{\pi_{\theta}(a|s)} \qquad \Longrightarrow$$

Prediction error/ bootstrapped Bellman error

The usual importance weight ratio with $\pi_{\theta}(a|s) \sim e^{Q_{\theta}(s,a)}$

$$-\widehat{\nabla_{\theta}L^{QL}}(s, a) = \underbrace{e^{\Delta_{O}}\Delta_{r}}\nabla_{\theta}Q_{\theta}(s, a)$$

$$-\widehat{\nabla_{\theta}L^{PG}}(s, a) = \underbrace{e^{\Delta_{O}}\Delta_{r}}\left(\nabla_{\theta}Q_{\theta}(s, a) - \mathbb{E}_{u \sim \pi_{\theta}(.|s)}\nabla_{\theta}Q_{\theta}(s, u)\right) + \nabla_{\theta}\mathbb{E}_{u \sim \pi_{\theta}(.|s)}\widehat{Q}_{\theta}(s, u)$$

$$\downarrow \downarrow$$

Gradient scaling function

$$f(\Delta_O, \Delta_r) = e^{\Delta_O} \Delta_R$$

A Maximum Likelihood Scale-Axis Variant

$$\mathrm{KL}(\hat{p} \| \pi_{\theta})$$
 \times Max-Lik loss for getting π_{θ} to imitate \hat{p}

$$\mathrm{KL}(\pi_{\theta} \| \hat{p})$$
 Entropy regularized expected reward for $\hat{p} \sim e^{\hat{r}}$

Observation: $\Delta_r \approxeq \log \frac{\hat{p}}{\pi_{\theta}}$ when $\hat{p} \propto e^{\lambda \hat{r} + (1-\lambda)Q_{\theta}(s,a)}$

Theorem:
$$-\nabla_{\theta} \text{KL}(\hat{p} || \pi_{\theta}) = e^{\Delta_{O}}(e^{\Delta_{r}} - 1) \nabla_{\theta} Q_{\theta}(s, a)$$

Gradient scaling function

$$f(\Delta_O, \Delta_r) = e^{\Delta_O}(e^{\Delta_r} - 1)$$

Matches Q-learning gradients upto first order when $\Delta_R \approx 0$

Combination Updates along the Two Axes

Scale function approximations

Description	$f(\Delta_O,\Delta_R)$
Q-learning	Δ_R
KL divergence exact	$e^{\Delta_O}(e^{\Delta_R}-1)$
KL divergence approximation	$\Delta_R(1+\Delta_O+\frac{\Delta_R}{2})_+$
Self imitation learning lower bound	$(\Delta_R)_+$
Hyper-parameterized	???

Constraints for $f: \mathbb{R}^2 \to \mathbb{R}$

- f(., 0) = 0
- $|f(\Delta_O, .)|$ increasing in Δ_O $f(-\infty, .) = 0$
- $f(., \Delta_p)$ increasing in Δ_p

A Parametric Class of Approximate Gradient Updates

Unifies several objectives as differing forms of the novel gradient scale function

- Maximum Likelihood update
- Self Imitation Learning
- Robust losses (e.g. Huber Loss)
- PPO clipping surrogate objective

A simple and general parametric scale function:

$$f_{MLA(\alpha_o,\alpha_r)}(x,y) = y \max\left(1 + \alpha_o x + \alpha_r y, \frac{(1 + \alpha_o x)_+}{2}\right)$$

Can recovers classical baselines for known parameters with diverse behaviors

- $\alpha_0 = 0$, $\alpha_r = 0$ \leftarrow MSE objective for value estimation
- α = 1, α = 0 ← (Approximate) Importance weighted PG
 α = 1, α = 1 ← (Approximate) Max-Likelihood IW variant

Empirical Analysis: A Diagnostic Benchmark

$$\phi_{\theta}(x) \triangleq (\theta_0 x_0, \theta_1 x_1) + \theta - \theta^*$$

Discrete action space embedded on unit circle

$$\psi(a) = (\cos(2\pi a/N), \sin(2\pi a/N))$$

$$Q^*(x,a) = \sigma(Q_{\theta^*}(x,a))$$

- Model mismatch; Impossible to perfectly fit $Q_{\theta}(x, a)$ to $Q^*(x, a)$
- Optimal policy guaranteed to be $\theta = \theta^*$

Empirical Results

Four Room env (Tabular)

Continuous Action Control: Mujoco

Summary: A novel perspective on Policy Optimization in RL

- Seemingly different learning objectives in RL have close connections:
 - Combining PG and Q-learning [Donoghue et al. 2017]
 - Equivalence between PG and Q-learning [Schulman et al. 2018]

- Our contributions:
 - New characterization of relations between gradients of classical objectives.
 - Several gradient updates organized into two novel axes of variation:
 - Form Axis: MSE, MVE, Policy Gradient objectives.
 - Scale Axis: Off-policy corrections & other surrogate objectives.
 - A simple and performant class of easy-to-tune update rules.