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Background

CPartially Observable Markov Decision Process (POMDP) provides a
principled and generic framework to model real world sequential
decision making processes.
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Partially Observable Markov Decision Process (POMDP)

OTrue environment states s; are unobservable.
CdObservations are high-dimensional and non-Markovian.
CThe decision should be made based on all past information T = {04.¢, a1.¢—1}.

POMDP (red circle for unobservable)



Belief State Learning

L10ne effective solution is to obtain the belief state:

mb(sy) = p(s¢loy,aq1,+,0¢-1,at-1,0¢)
m The probability distribution of the unobservable environment state
conditioned on the past observations and actions.

OTraditional methods of calculating belief states assume finite
discrete space with a known model.

CdRecently, a branch of works have been proposed to learn the belief
states of POMDPs with unknown model and continuous state space.



Belief State Learning

CdHowever, they still cannot capture general belief states due to the
intractability of complex distributions in high-dimensional continuous
space.
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(a) Approximated Gaussian Belief (b) True Belief

pislty @ aGslto) @ qGlto) @ q(slto)



FIOw-based Recurrent BElief State model (FORBES)

CdRather than using Gaussian family, it is more desirable to use a family of
distributions that is highly flexible.

Ofy: RP > RP is an invertible and differentiable mapping:
Zk = for © for_, © " ° fo,(20)
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(a) Belief state inference (b) Predictions beginning from different samples
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POMDP RL framework based on FORBES

CITo better exploit the flexibility within the belief distribution, we run
the sampling method N times to capture the diverse predictions.
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ELBO

Experiments: Digit Writing Task

CIDigit writing task
m Inputs: The first 15 frames
m Output: Predictions of the following strokes
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Experiment: Visual-Motor Control Task

CIFORBES can achieve better sample efficiency and performance.
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Experiment: Multimodal Visual-Motor Control Task

CMultimodal DMC: we randomly sample m from {+1,—1} at the
beginning of the episode and add m - ¢ to the actions.
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Thanks for your attention



