

Flow-based Recurrent Belief State Learning for POMDPs

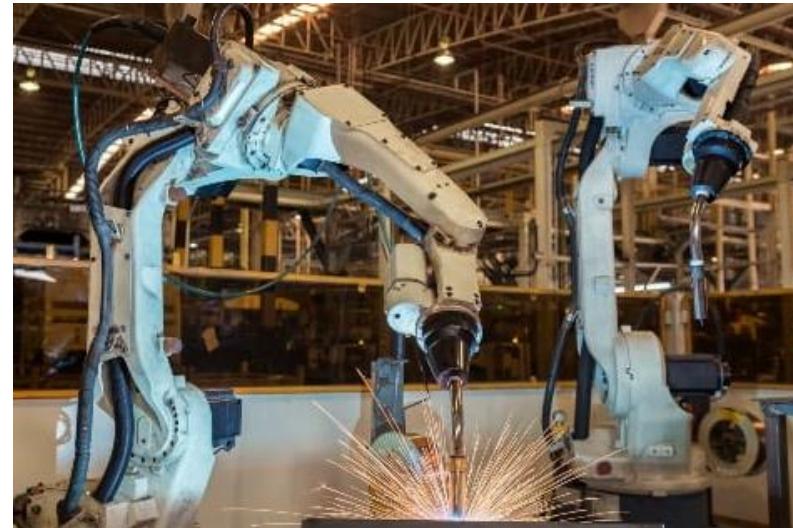
Xiaoyu Chen, Yao Mu, Ping Luo, Shengbo Eben Li, Jianyu Chen

ICML 2022

Background

- Partially Observable Markov Decision Process (POMDP) provides a principled and generic framework to model real world sequential decision making processes.

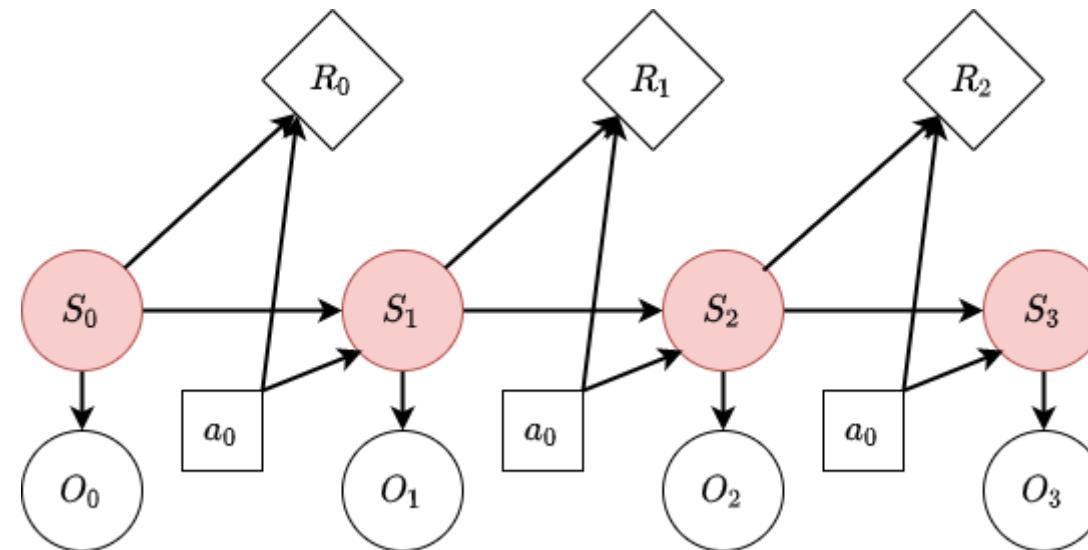
Intelligent vehicles



Intelligent robots

Partially Observable Markov Decision Process (POMDP)

- True environment states s_t are **unobservable**.
- Observations are **high-dimensional** and **non-Markovian**.
- The decision should be made based on **all past information** $\tau = \{o_{1:t}, a_{1:t-1}\}$.



POMDP (red circle for unobservable)

Belief State Learning

□ One effective solution is to obtain the **belief state**:

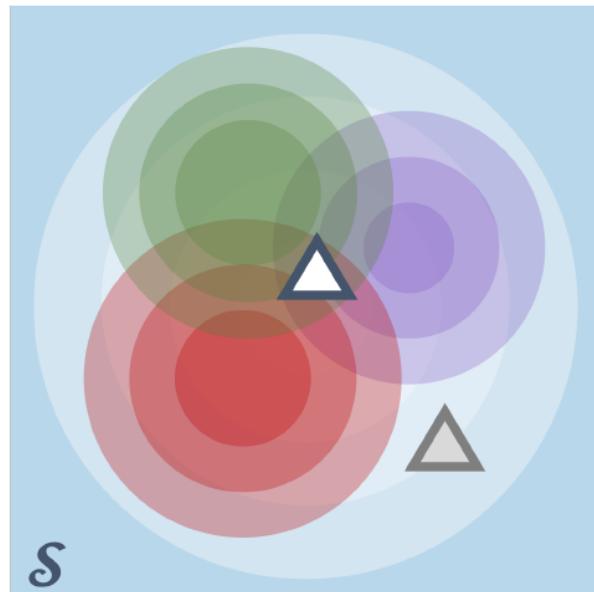
- $b(s_t) = p(s_t | o_1, a_1, \dots, o_{t-1}, a_{t-1}, o_t)$
- The probability distribution of the unobservable environment state conditioned on the past observations and actions.

□ Traditional methods of calculating belief states assume **finite discrete space** with a known model.

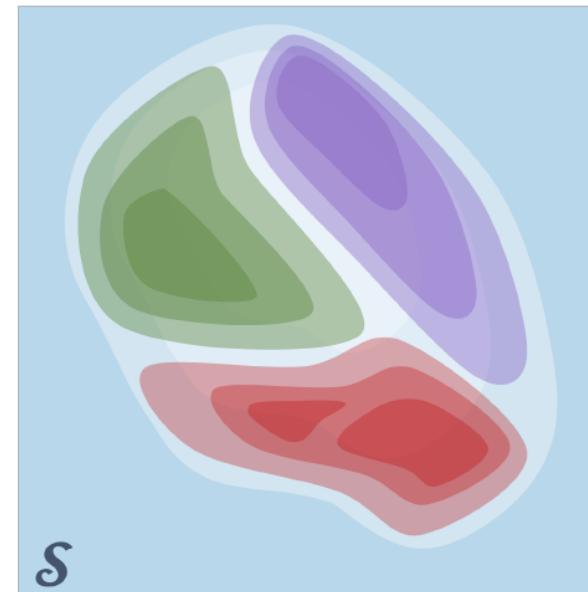
□ Recently, a branch of works have been proposed to learn the belief states of POMDPs with **unknown model** and **continuous state space**.

Belief State Learning

- However, they still cannot capture general belief states due to the intractability of complex distributions in high-dimensional continuous space.



(a) Approximated Gaussian Belief



(b) True Belief

$p(s|\tau)$

$q(s|\tau, o)$

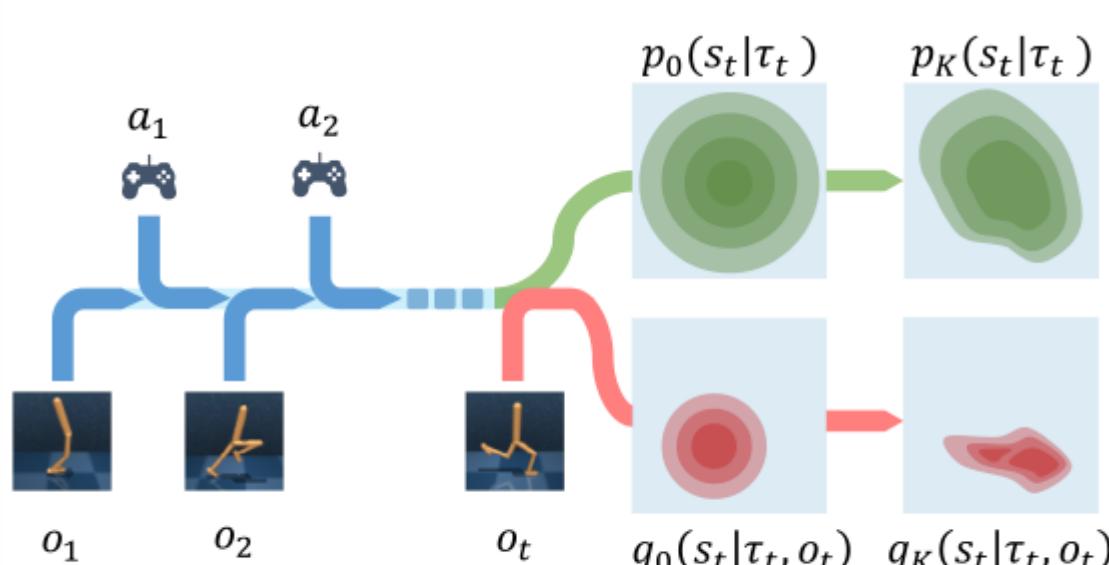
$q(s|\tau, o)$

$q(s|\tau, o)$

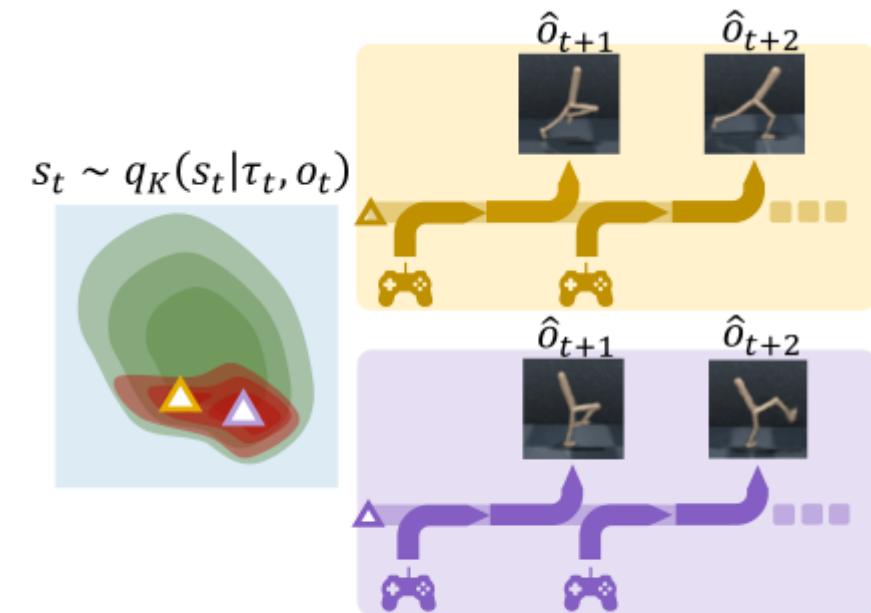
FIow-based Recurrent BElief State model (FORBES)

- ❑ Rather than using Gaussian family, it is more desirable to use a family of distributions that is highly flexible.
- ❑ $f_\theta: \mathbb{R}^D \rightarrow \mathbb{R}^D$ is an invertible and differentiable mapping:

$$z_K = f_{\theta_K} \circ f_{\theta_{K-1}} \circ \cdots \circ f_{\theta_1}(z_0)$$



(a) Belief state inference



(b) Predictions beginning from different samples

POMDP RL framework based on FORBES

- To better exploit the flexibility within the belief distribution, we run the sampling method N times to capture the diverse predictions.

$$\mathcal{J}_{\text{Critic}}(\xi) = \mathbb{E}_{s_{i,0} \sim q_K, a_\tau \sim q_\phi, s_{i,\tau} \sim p_\psi} \left[\sum_{i=1}^N \sum_{\tau=t}^{t+H} \frac{1}{2} (v_\xi(s_{i,\tau}) - \text{sg}(V_{i,\tau}^\lambda))^2 \right].$$

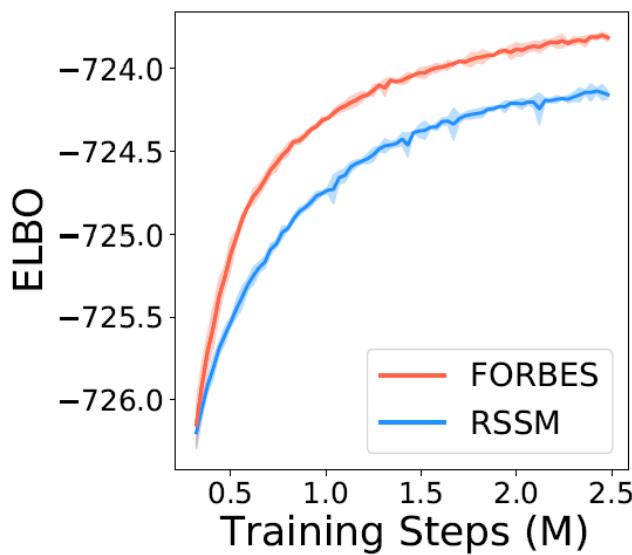
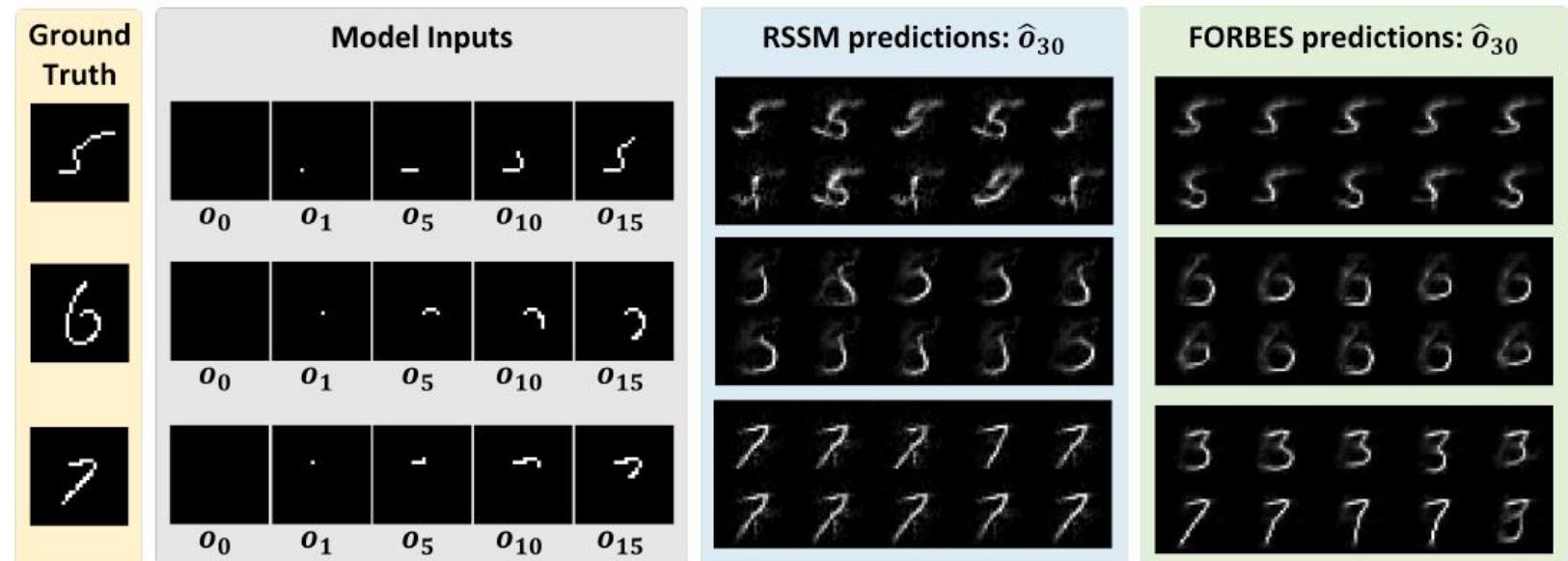
$$\mathcal{J}_{\text{Actor}}(\phi) = \mathbb{E}_{s_{i,0} \sim q_K, a_\tau \sim q_\phi, s_{i,\tau} \sim p_\psi} \left(\sum_{i=1}^N \sum_{\tau=t}^{t+H} V_{i,\tau}^\lambda \right)$$

$$\min_{\psi, \xi, \phi, \theta, \omega} \quad \mathcal{J}_{\text{FORBES}} = \alpha_0 \mathcal{J}_{\text{Critic}}(\xi) - \alpha_1 \mathcal{J}_{\text{Actor}}(\phi) - \alpha_2 \mathcal{J}_{\text{Model}}(\psi, \theta, \omega)$$

Experiments: Digit Writing Task

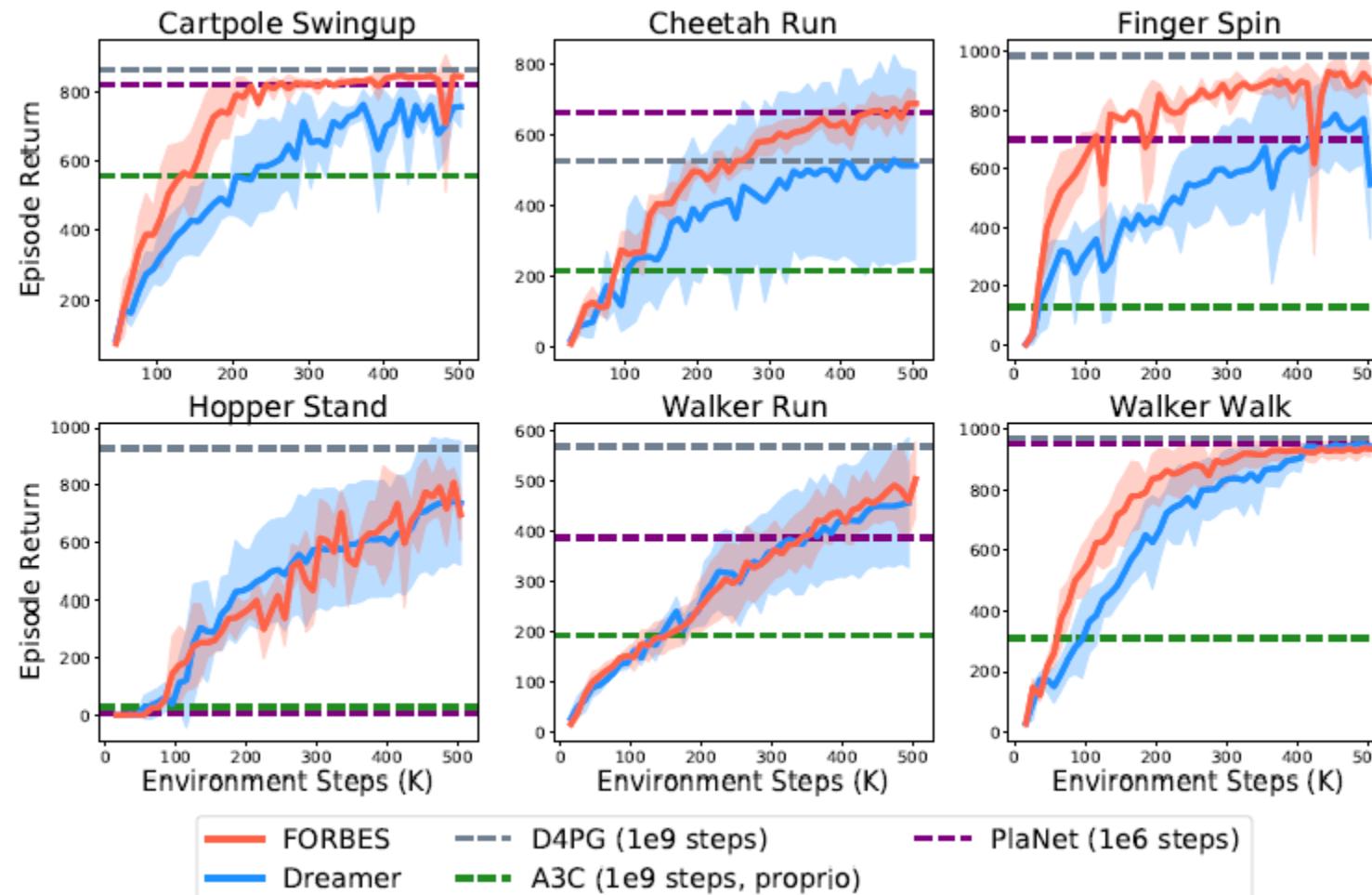
□ Digit writing task

- Inputs: The first 15 frames
- Output: Predictions of the following strokes



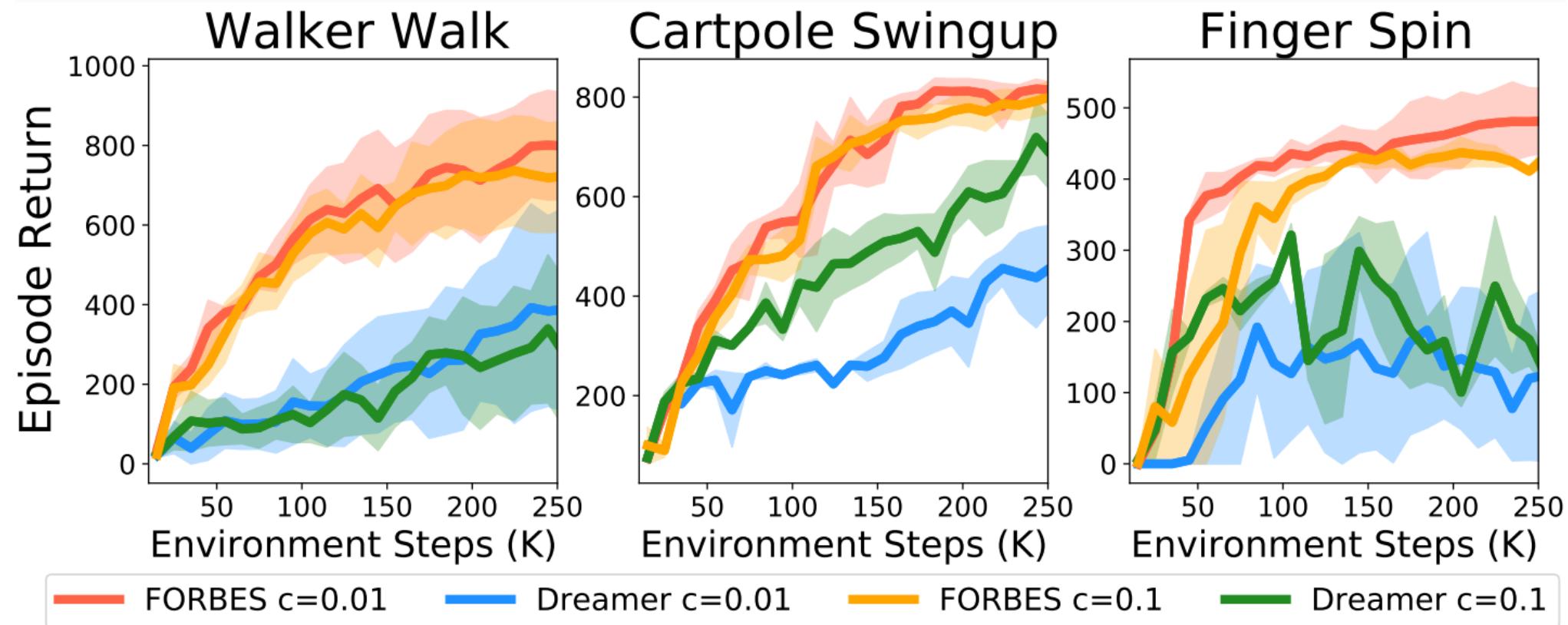
Experiment: Visual-Motor Control Task

□ FORBES can achieve better sample efficiency and performance.



Experiment: Multimodal Visual-Motor Control Task

□ Multimodal DMC: we randomly sample m from $\{+1, -1\}$ at the beginning of the episode and add $m \cdot c$ to the actions.



Thanks for your attention

Thanks for your attention