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Summary 
● Unified taxonomy to understand causal 
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● Prominent causal conceptions of algorithmic 

fairness, if implemented, can harm the groups 
they were designed to protect 
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 Class Diversity 

Degree      
Attainment

D(      ,       ) =

How to ensure that D is fair? 

  Test Score          Race                           Decision                    
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 [Part 1: causal fairness 
overview + taxonomy ]
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● Close to legal notion of 
disparate impact

● Could potentially be put into 
practice

● Close to legal notion of 
disparate treatment

● Serious theoretical and 
practical challenges

D(    =95,    =Minority) = 
D(    =95,    =Majority) 

Traditional fairness definitions

Anti-classification

Race feature should not be used in 
the decision-making 

Precision = % of admits who successfully        
aaaaaaaaaaobtain a bachelor’s degree       

Classification parity

Model performance should be the 
same across groups

x                                           x           
 Race                         Decision                Decision                  Error Rate Disparity

15



D(    =74,    =Black) = D(    =74,    =White) 

● Close to legal notion of 
disparate impact

● Could potentially be put into 
practice

Anti-classification
● Close to legal notion of 

disparate treatment

● Serious theoretical and 
practical challenges

Race feature should not be used in 
the decision-making 

Race may still indirectly 
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(educational 
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D(    =95,    =Minority) = 
D(    =95,    =Majority) 

Traditional fairness definitions

Anti-classification

Race feature should not be used in 
the decision-making 

Classification parity

Model performance should be the 
same across groups

x                                           x           
 Race                         Decision                Decision                  Error Rate Disparity

Minority group precision = 
Majority group  precision 
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D(    =74,    =Black) = D(    =74,    =White) 

● Close to legal notion of 
disparate impact

● Could potentially be put into 
practice

Anti-classification
● Close to legal notion of 

disparate treatment

● Serious theoretical and 
practical challenges

Race feature should not be used in 
the decision-making 

Classification parity

Model performance should be the 
same across groups

False positive rate (admits who did not 
graduate) should be equal between groups

Race may still indirectly 
affect decisions 

Decisions may affect graduation, 
altering error rates 

Causal Fairness Motivation

x                                                        

x                                                        

Race

   Test Score                      Decision                    

              Decision
(educational 
opportunities) 
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Classification parity

Model performance should be the 
same across groups

False positive rate (admits who did not 
graduate) should be equal between groups

Family 2: Model performance should be 
counterfactually equal between groups 

x                                                        

              Decision

    Degree Attainment       Error Rate Disparity                              



Causal fairness taxonomy [see paper] 

Family 1: Limit direct and indirect effects of race on decision

● Counterfactual fairness
● Path-specific fairness

Family 2: Limit counterfactual disparities between groups 

● Counterfactual equalized odds
● Counterfactual predictive parity 
● Principal fairness
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D(    =74,    =Black) = D(    =74,    =White) 

● Close to legal notion of 
disparate impact

● Could potentially be put into 
practice

Anti-classification
● Close to legal notion of 

disparate treatment

● Serious theoretical and 
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Race feature should not be used in 
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are epistemologically problematic]
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educational opportunities] 28
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Part 2: What are the downstream 
consequences of causal fairness?

Counterfactual Fairness                                  Diversity             Degree Attainment 
                                 

?
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Illustrative example 
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Pareto frontier: different 
people trade off degree 
attainment and diversity 
differently

Maximize

Number of Bachelor’s Degrees 
+ 
λ * # Admits from Target Group

Illustrative example 

33



Pareto frontier: different 
people trade off degree 
attainment and diversity 
differently

Maximize

Number of Bachelor’s Degrees 
+ 
λ * # Admits from Target Group

Illustrative example 

34



Illustrative example 

Pareto frontier: different 
people trade off degree 
attainment and diversity 
differently
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Illustrative example 
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Illustrative example 

Counterfactual            Randomized  
     Fairness                     Lottery                              
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Theoretical result: Under mild assumptions, counterfactual fairness 
requires decisions to ignore race and all downstream covariates

   Interview        Activities      Test Score                     Decision                    

Race (different opportunities) 
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Theoretical result: Under mild assumptions, counterfactual fairness 
requires decisions to ignore race and all downstream covariates

Race (different opportunities) 
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   Interview        ActivitiTest Score        Race                    

   Interview        Activities      Test Score                     Decision                    

[               ]

Age 
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Theoretical result: Under mild assumptions, counterfactual fairness 
requires decisions to ignore race and all downstream covariates

Race (different opportunities) 

   Interview        Activities      Test Score                     Decision                    

[               ]

Age 
x                                                        

x                                                        x                                                        x                                                        

Decisions based 
exclusively on age
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Proof sketch

D(T = Low, Race = Majority)

D(T = Med., Race = Majority)

D(T = High, Race = Majority)
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D(T = Low, Race = Minority)

D(T = Med., Race = Minority)

D(T = High, Race = Minority)
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D(T = Low, Race = Minority)

D(T = Med., Race = Minority)

D(T = High, Race = Minority)



Causal fairness taxonomy [see paper] 

Family 1: Limit direct and indirect effects of race on decision

● Counterfactual fairness
● Path-specific fairness

Family 2: Limit counterfactual disparities between groups 

● Counterfactual equalized odds
● Counterfactual predictive parity 
● Principal fairness

47



Key theoretical result #2
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Key theoretical result #2

Causal Fairness
   (Family 1 and 2)                                        Decreased

Class Diversity 

Decreased 
Degree      

Attainment
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Key theoretical result #2

In almost every case (in a measure theoretic sense) it is impossible to satisfy 
prominent causal fairness definitions and be Pareto optimal                                                 

Causal Fairness
   (Family 1 and 2) 
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 Decreased
Class Diversity 

Decreased 
Degree      

Attainment



Summary

● Causal fairness definitions lead to Pareto inefficient decisions, 
perversely harming the groups they were designed to protect  

● Directly optimizing for desired outcomes (e.g. degree 
attainment, diversity) may be preferable
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Thank You!

[hamedn.com                                         hamedn@cs.stanford.edu]

[jgaeb.com                                                     jgaeb@stanford.edu]

H. Nilforoshan*, J. Gaebler*, R. Shroff, & S. Goel. “Causal Conceptions 
of Fairness and their Consequences.” International Conference on 
Machine Learning (ICML 2022).
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Full Paper

Technical Blog Post

jgaeb.com/2022/07/18/prevalence.html



0                            50                          100

Assumptions

There is variance in the counterfactual distribution of covariates

 T=95

 T=95  T=95

Counterfactual Test Score
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What do we mean by “almost every”?

medium score

low score high score
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What do we mean by “almost every”?

medium score

low score high score

P(     = low)  = 0.05 

P(     = medium)   = 0.05  

P(     = high)  = 0.90 
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What do we mean by “almost every”?

medium score

low score high score

P(     = low)  = 0.90 

P(     = medium)   = 0.05  

P(     = high)  = 0.05 

P(              Pareto Inefficient |          Randomly Chosen Distribution) = 1.0
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Simulation variables 

 Test 
Score                   

Educational 
Opportunities

Race Degree 
Attainment

Preparation

Decision

Decision
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Key idea
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