Causal Conceptions of Fairness and their Consequences

Hamed Nilforoshan*, Johann Gaebler*, Ravi Shroff, Sharad Goel

hamedn@cs.stanford.edu

jgaeb@stanford.edu

ravi.shroff@nyu.edu sqoel@hks.harvard.edu

(* equal contribution)

Summary

Unified taxonomy to understand causal fairness research field

Summary

Unified taxonomy to understand causal fairness research field

 Prominent causal conceptions of algorithmic fairness, if implemented, can harm the groups they were designed to protect

Test Score		
73		
65		
80		

Test Score	Race Group	
73	Minority	
65	Majority	
80	Minority	

Test Score	ca Race Group	Decision	
73	Minority	总	
65	Majority	- ×	
80	Minority	Ŕ	

Test Score	Race Group	Decision	Degree Attainment
73	Minority	Ŕ	
65	Majority	- ×	
80	Minority	Ŕ	8

How to ensure that \overline{D} is fair?

[Part 1: causal fairness overview + taxonomy]

Traditional fairness definitions

Anti-classification

Race feature should not be used in the decision-making

Causal Fairness Motivation

Race may still *indirectly* affect decisions

Causal Fairness Taxonomy

Family 1: Limit direct and indirect effects of race on decision

Traditional fairness definitions

Anti-classification

Race feature should not be used in the decision-making

$$D(= 95, = Minority) = D(= 95, = Majority)$$

Classification parity

Model performance should be the same across groups

Precision = % of admits who successfully obtain a bachelor's degree

Traditional fairness definitions

Anti-classification

Race feature should not be used in the decision-making

$$D(= 95, = Minority) = D(= 95, = Majority)$$

Classification parity

Model performance should be the same across groups

Minority group precision = Majority group precision

Causal Fairness Motivation

Race may still *indirectly* affect decisions

Decisions may affect graduation, altering error rates

Causal Fairness Taxonomy

Family 1: Limit direct and indirect effects of race on decision

Family 2: Model performance should be counterfactually equal between groups

Causal fairness taxonomy [see paper]

Family 1: Limit direct and indirect effects of race on decision

- Counterfactual fairness
- Path-specific fairness

Family 2: Limit counterfactual disparities between groups

- Counterfactual equalized odds
- Counterfactual predictive parity
- Principal fairness

Causal fairness taxonomy [see paper]

Family 1: Limit direct and indirect effects of race on decision

- Counterfactual fairness
- Path-specific fairness

Family 2: Limit counterfactual disparities between groups

- Counterfactual equalized odds
- Counterfactual predictive parity
- Principal fairness

Family 1: Limit direct and indirect effects of race on decision

Family 1: Limit direct and indirect effects of race on decision

Given a subset of applicants with the exact same feature values, admissions rate should not change in a counterfactual world in which they belonged to a different race group

[Important caveat: counterfactuals of race are epistemologically problematic]

Family 1: Limit direct and indirect effects of race on decision

Family 1: Limit direct and indirect effects of race on decision

Family 1: Limit direct and indirect effects of race on decision

[T* decreases due to reduced access to educational opportunities]

Family 1: Limit direct and indirect effects of race on decision

[T* decreases due to reduced access to educational opportunities]

Family 1: Limit direct and indirect effects of race on decision

Given a subset of applicants with the exact same feature values, admissions rate should not change in a counterfactual world in which they belonged to a different race group

[T* decreases due to reduced access to educational opportunities]

Part 2: What are the downstream consequences of causal fairness?

Pareto frontier: different people trade off degree attainment and diversity differently

Pareto frontier: different people trade off degree attainment and diversity differently

Pareto frontier: different people trade off degree attainment and diversity differently

Illustrative example

Counterfactual Fairness

Randomized Lottery

Decisions based exclusively on age

D(T = Low, Race = Majority)

D(T = Med., Race = Majority)

D(T = High, Race = Majority)

D(T = Low, Race = Minority)

D(T = Med., Race = Minority)

D(T = High, Race = Minority)

Causal fairness taxonomy [see paper]

Family 1: Limit direct and indirect effects of race on decision

- Counterfactual fairness
- Path-specific fairness

Family 2: Limit counterfactual disparities between groups

- Counterfactual equalized odds
- Counterfactual predictive parity
- Principal fairness

Key theoretical result #2

Key theoretical result #2

Key theoretical result #2

In *almost every* case (in a measure theoretic sense) it is <u>impossible</u> to satisfy prominent causal fairness definitions and be Pareto optimal

Summary

 Causal fairness definitions lead to Pareto inefficient decisions, perversely harming the groups they were designed to protect

 Directly optimizing for desired outcomes (e.g. degree attainment, diversity) may be preferable

Thank You!

Full Paper

H. Nilforoshan*, J. Gaebler*, R. Shroff, & S. Goel. "Causal Conceptions of Fairness and their Consequences." International Conference on Machine Learning (ICML 2022).

Technical Blog Post

jgaeb.com/2022/07/18/prevalence.html

[jgaeb.com

[hamedn.com

igaeb@stanford.edu]

hamedn@cs.stanford.edu] 52

Assumptions

There is variance in the counterfactual distribution of covariates

Assumptions

There is variance in the counterfactual distribution of covariates

$$P([] = low) = 0.05$$

$$P(\mathbf{E} = \text{medium}) = 0.90$$

$$P(\mathbf{E} = high) = 0.05$$

medium score $P(\mathbf{Q} = low)$ = 0.90P(= medium) = 0.05 $P(\mathbf{Q} = high)$ = 0.05low score high score

Simulation variables

Key idea

Key idea

Key idea

