

# Interactively Learning Preference Constraints in Linear Bandits

International Conference on Machine Learning (ICML), 2022

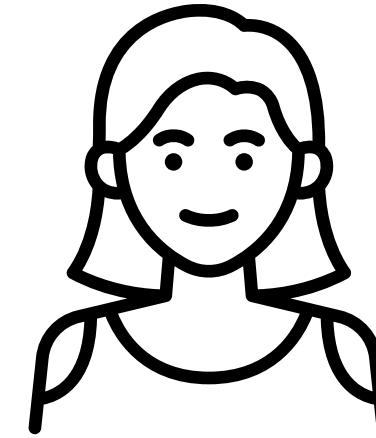
---

David Lindner<sup>1</sup>, Sebastian Tschiatschek<sup>2</sup>, Katja Hofmann<sup>3</sup>, Andreas Krause<sup>1</sup>

<sup>1</sup>ETH Zurich; <sup>2</sup>University of Vienna; <sup>3</sup>Microsoft Research Cambridge

Human preferences often naturally decompose into rewards and constraints

Human preferences often naturally decompose into rewards and constraints



Human preferences often naturally decompose into rewards and constraints



„Drive to the  
grocery store.“

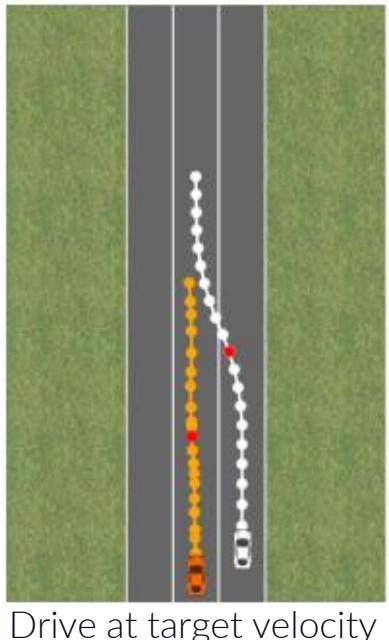
Human preferences often naturally decompose into rewards and constraints



Constraint can be more transferable and robust than rewards

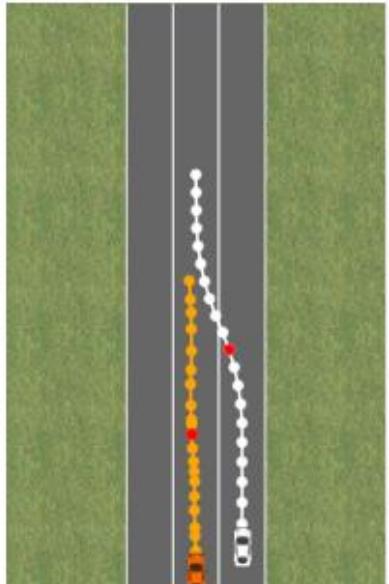
# Constraint can be more transferable and robust than rewards

Encode task as reward + penalty

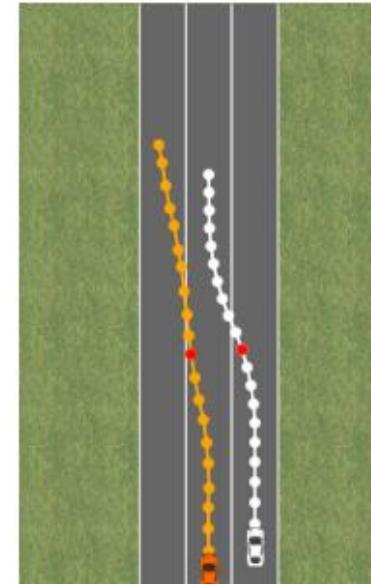


# Constraint can be more transferable and robust than rewards

Encode task as reward + penalty

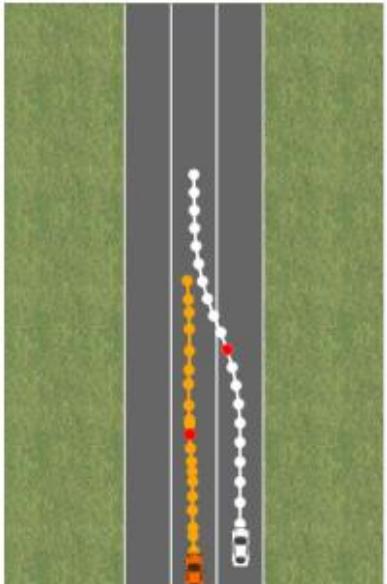


Encode task as reward + constraint



# Constraint can be more transferable and robust than rewards

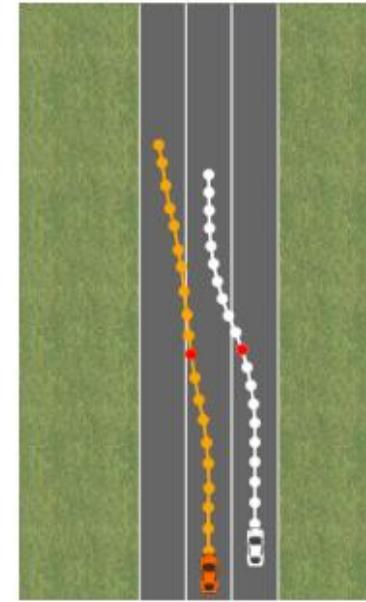
Encode task as reward + penalty



Drive at target velocity



Encode task as reward + constraint

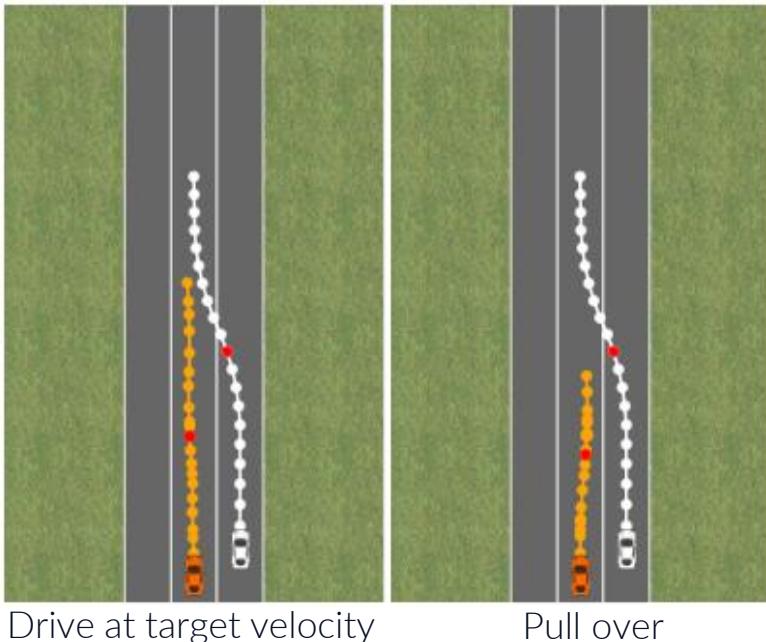


Drive at target velocity

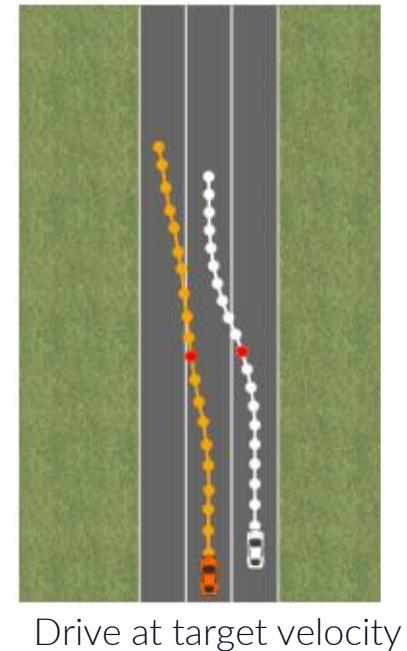


# Constraint can be more transferable and robust than rewards

Encode task as reward + penalty

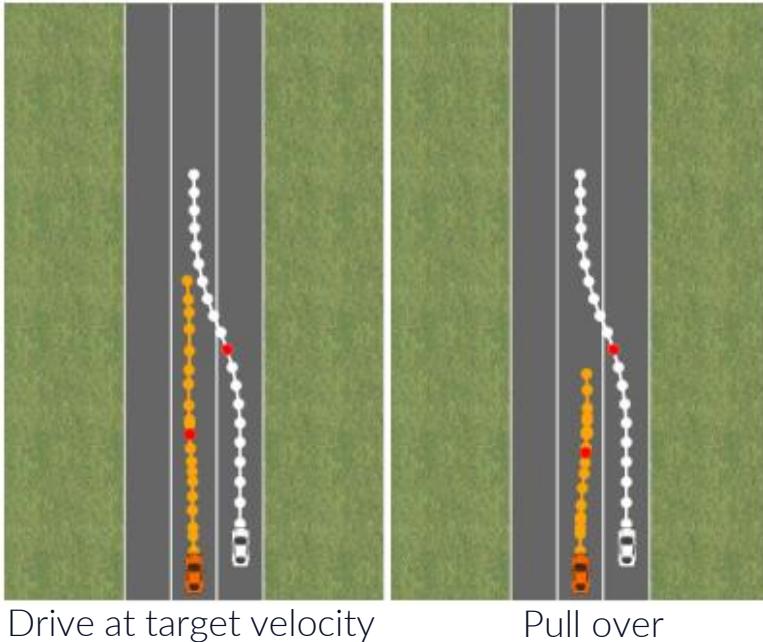
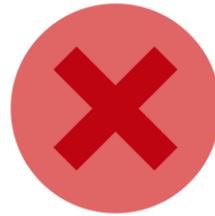


Encode task as reward + constraint

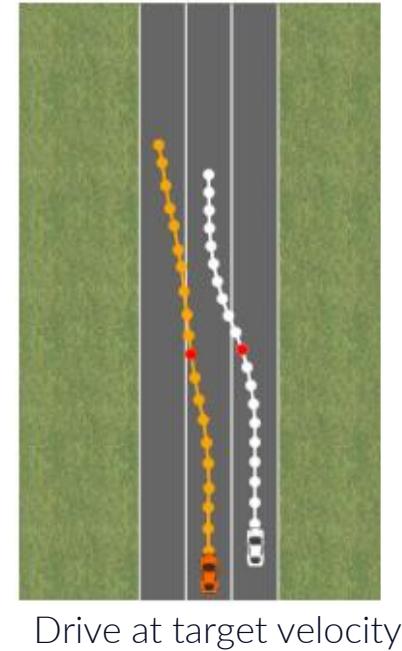


# Constraint can be more transferable and robust than rewards

Encode task as reward + penalty

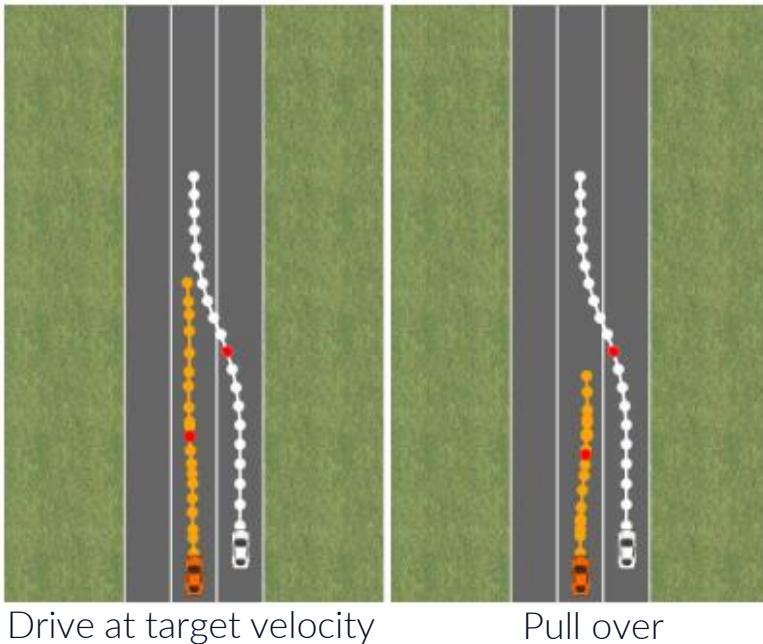


Encode task as reward + constraint

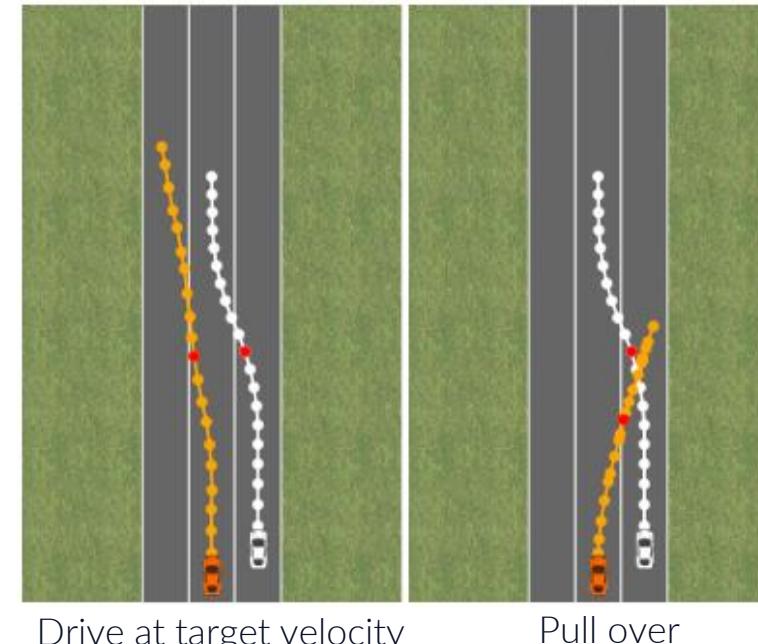


# Constraint can be more transferable and robust than rewards

Encode task as reward + penalty

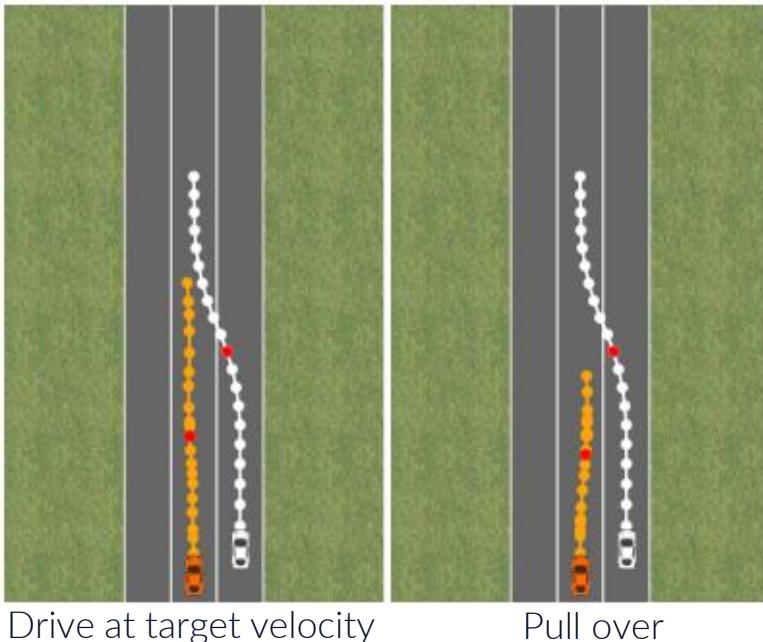


Encode task as reward + constraint

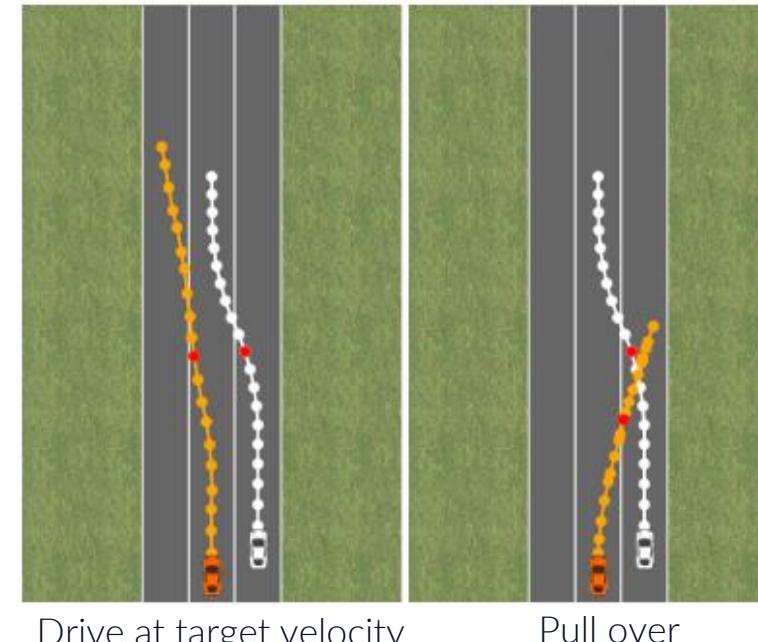


# Constraint can be more transferable and robust than rewards

Encode task as reward + penalty

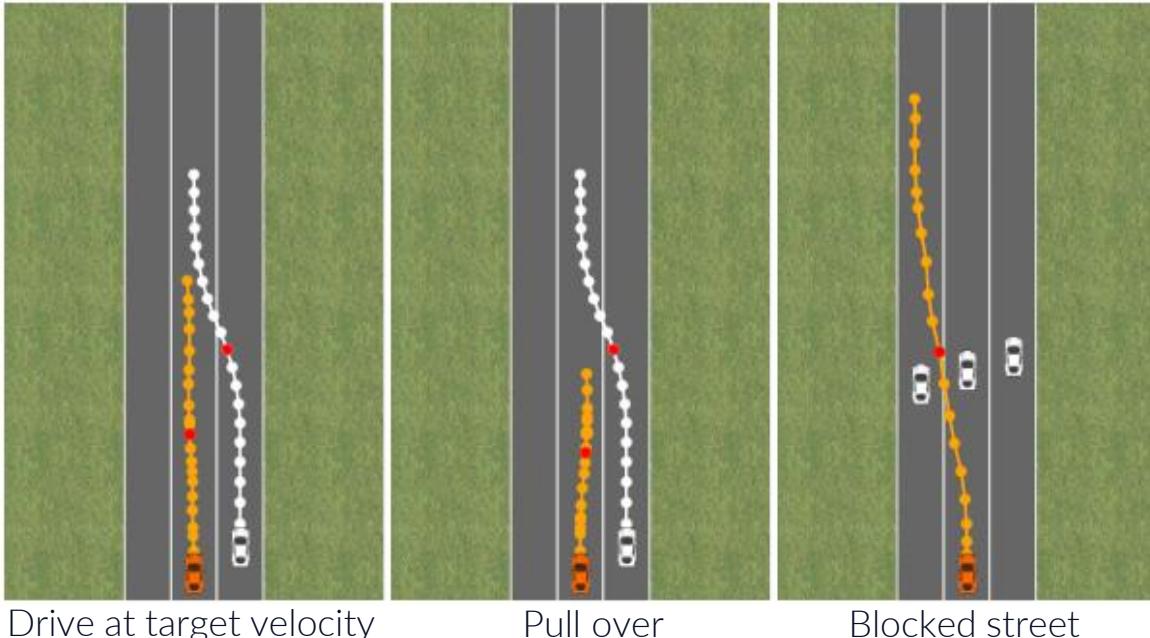


Encode task as reward + constraint

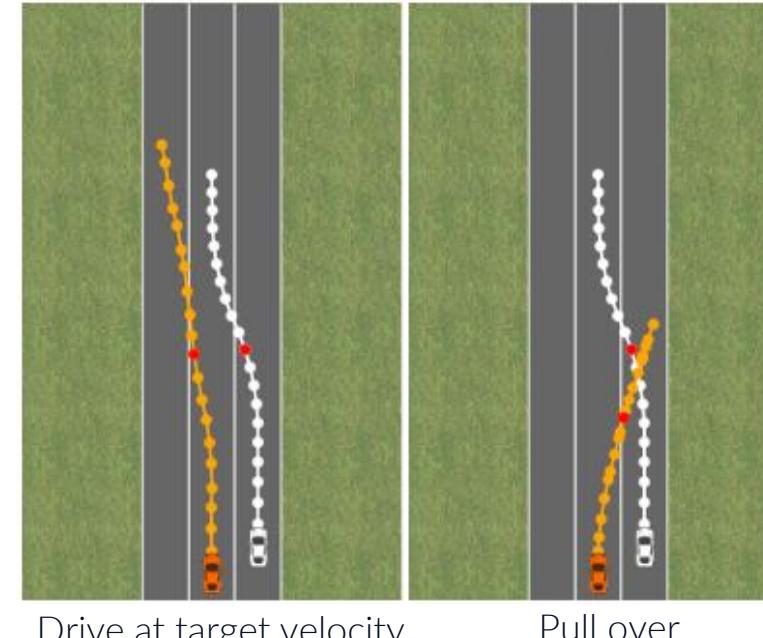


# Constraint can be more transferable and robust than rewards

Encode task as reward + penalty

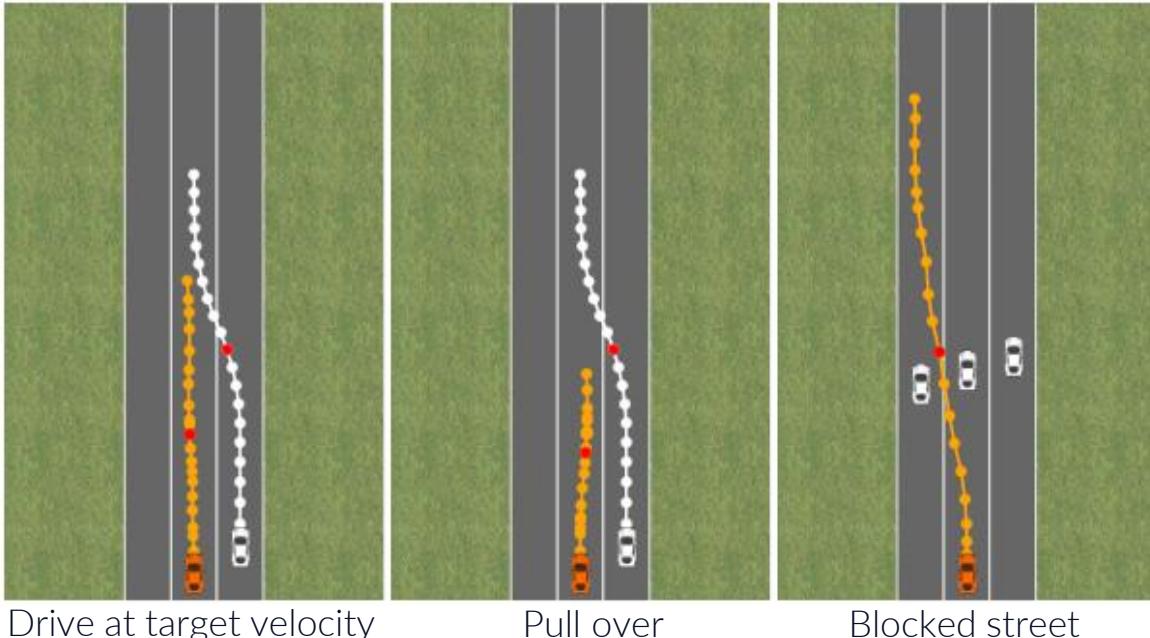


Encode task as reward + constraint

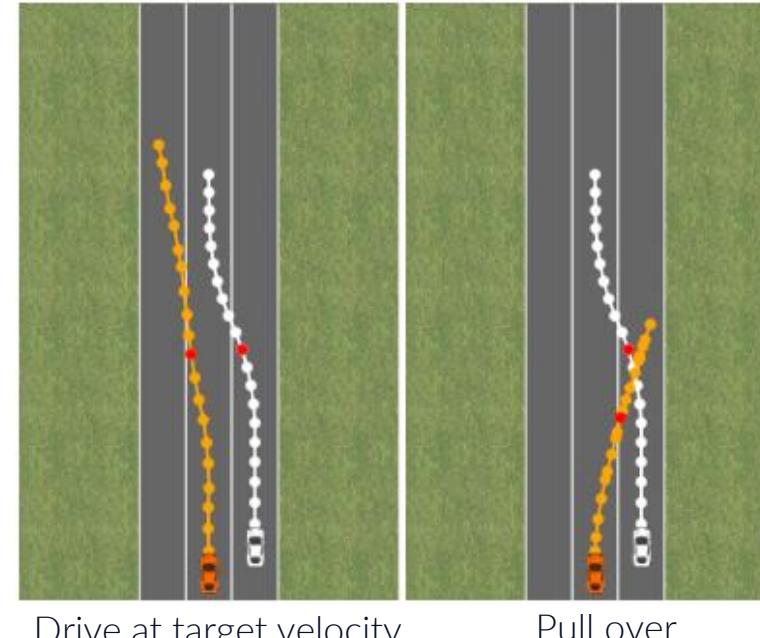


# Constraint can be more transferable and robust than rewards

Encode task as reward + penalty

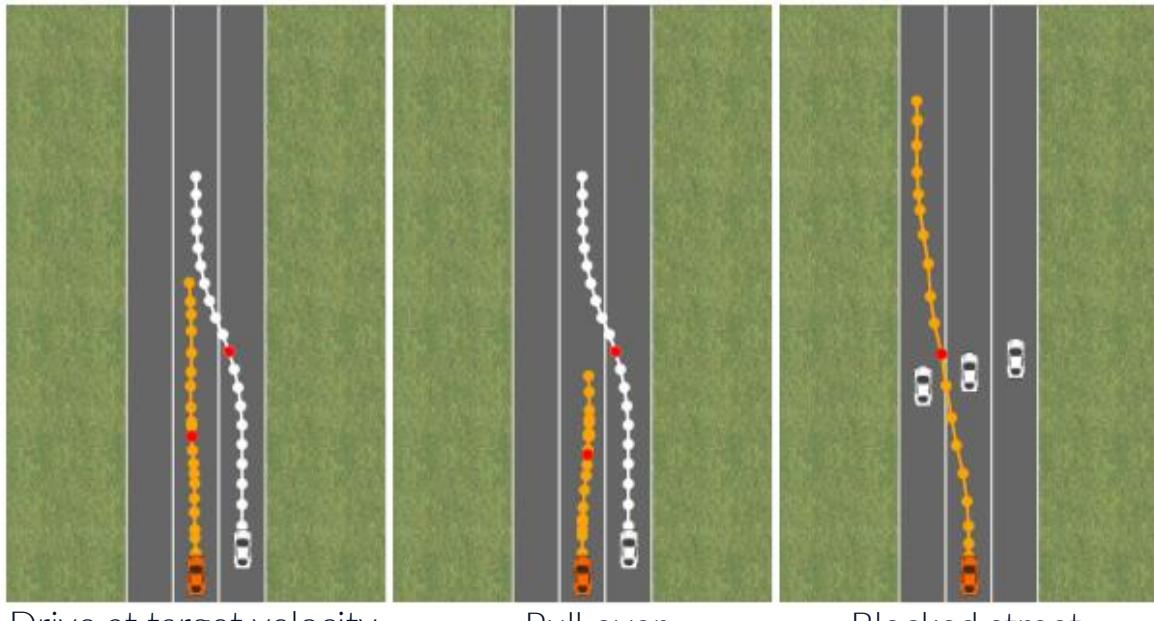
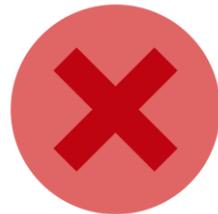


Encode task as reward + constraint

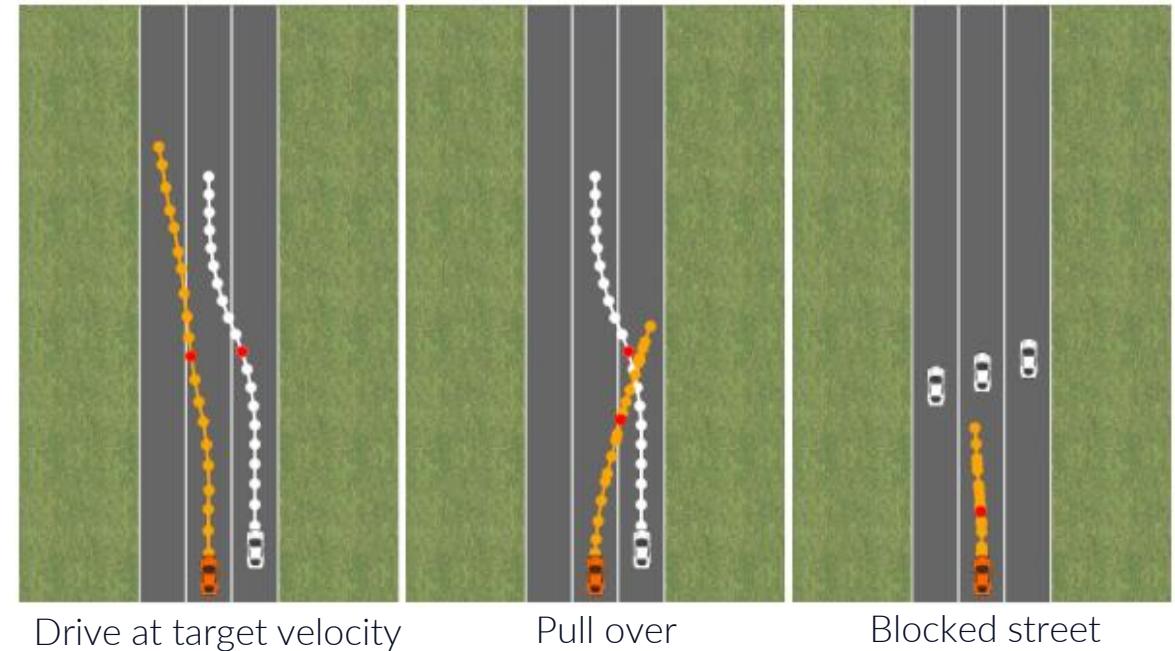


# Constraint can be more transferable and robust than rewards

Encode task as reward + penalty

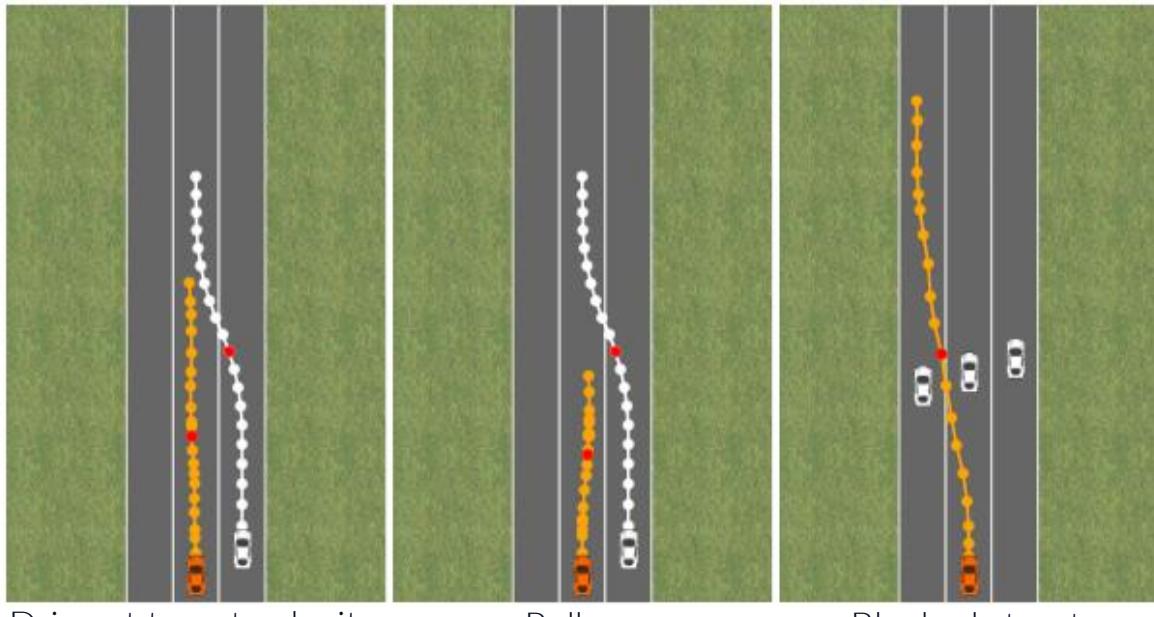


Encode task as reward + constraint

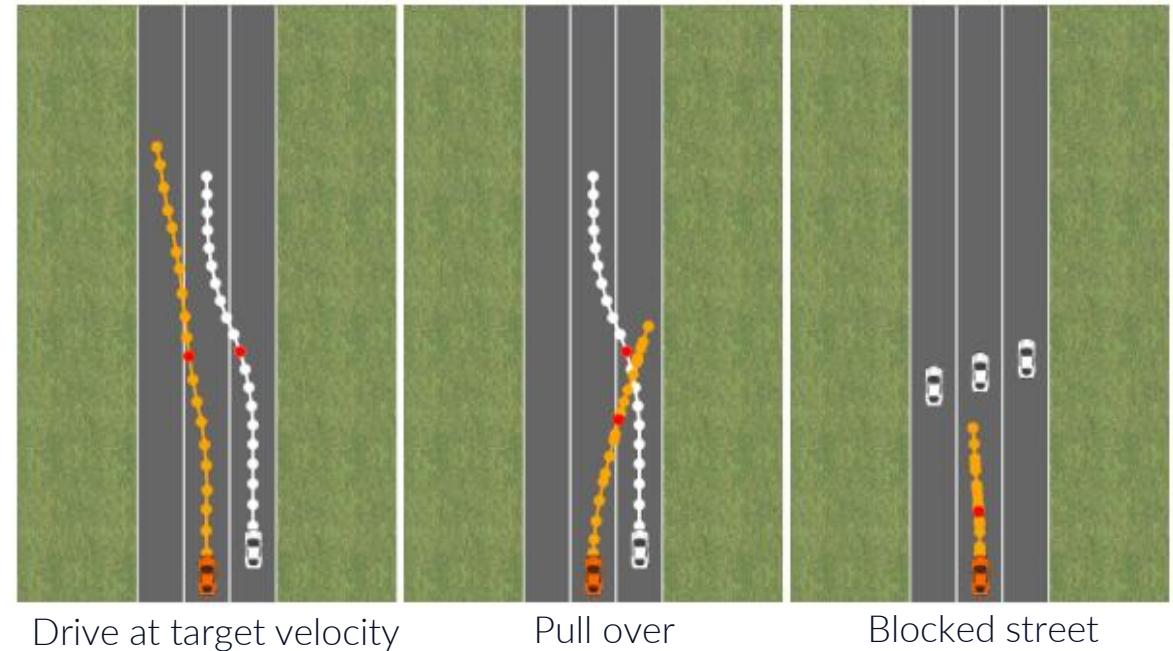


# Constraint can be more transferable and robust than rewards

Encode task as reward + penalty



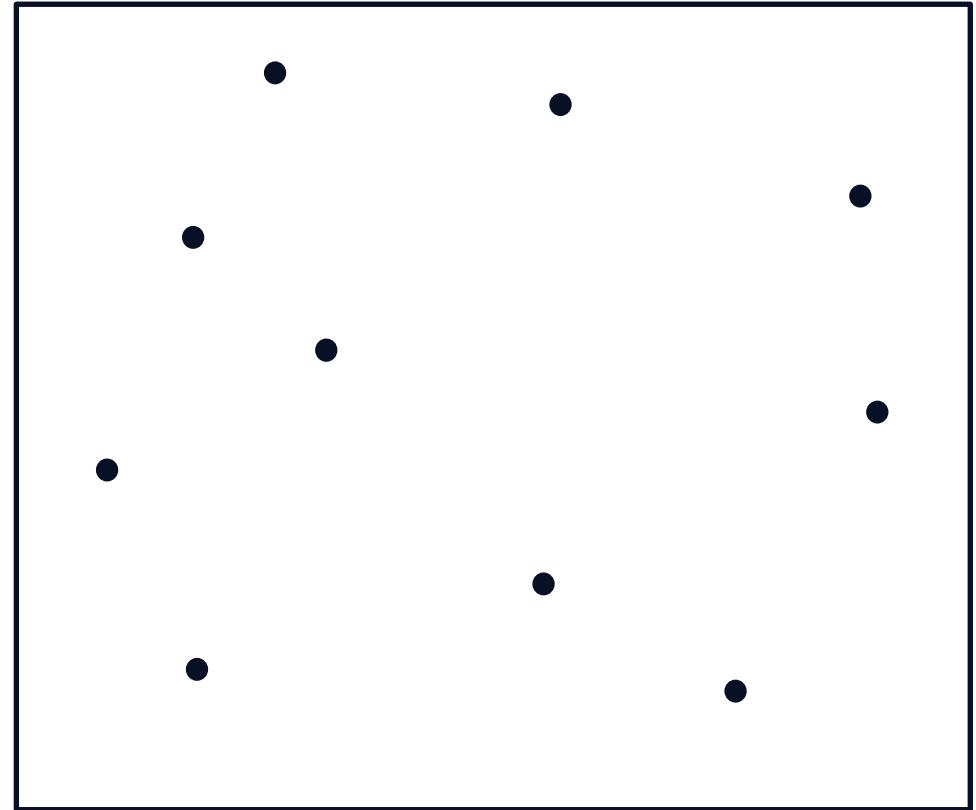
Encode task as reward + constraint



# Constrained linear best-arm identification (CBAI)

# Constrained linear best-arm identification (CBAI)

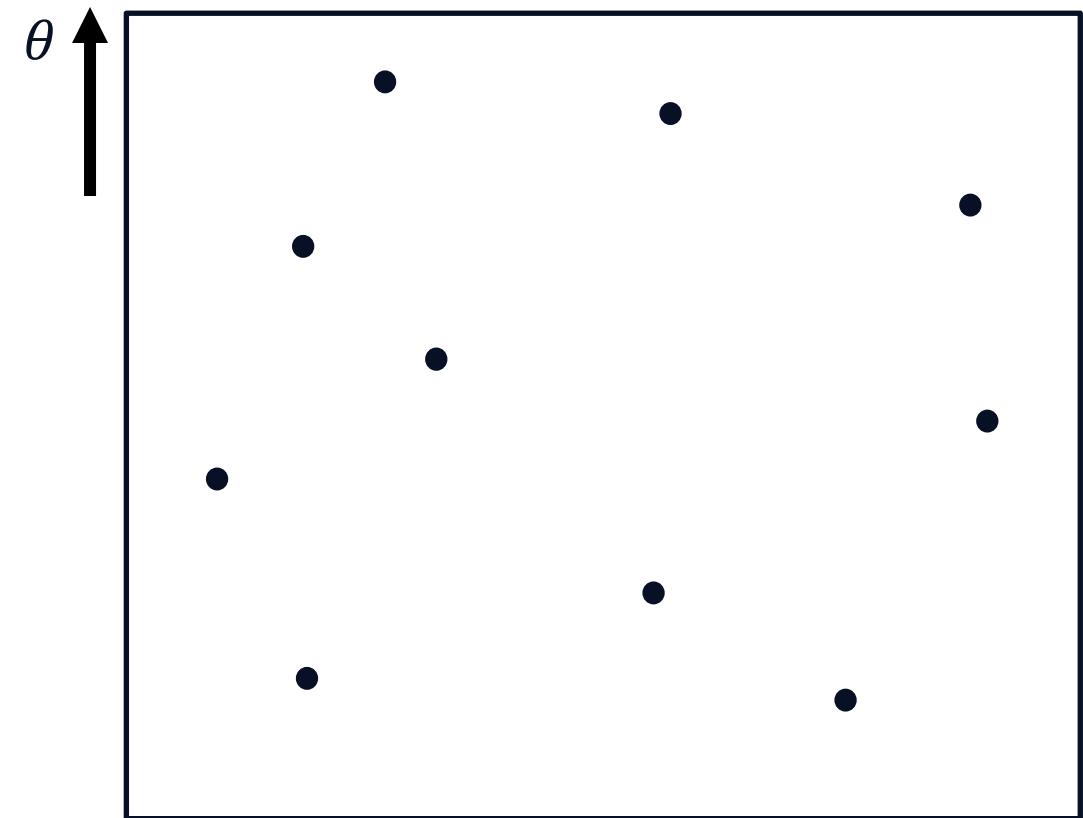
Known set of arms  $\mathcal{X} \subset \mathbb{R}^d$



# Constrained linear best-arm identification (CBAI)

Known set of arms  $\mathcal{X} \subset \mathbb{R}^d$

Known reward parameter  $\theta \in \mathbb{R}^d$

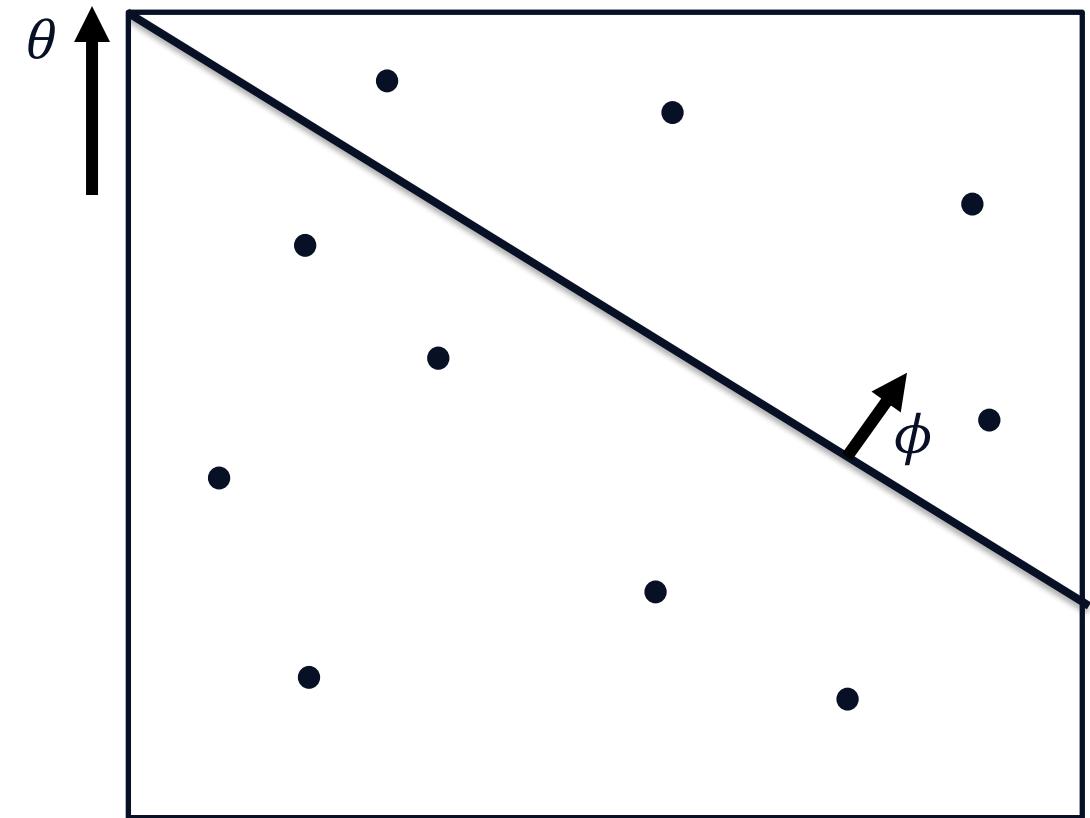


# Constrained linear best-arm identification (CBAI)

Known set of arms  $\mathcal{X} \subset \mathbb{R}^d$

Known reward parameter  $\theta \in \mathbb{R}^d$

Unknown constraint parameter  $\phi \in \mathbb{R}^d$

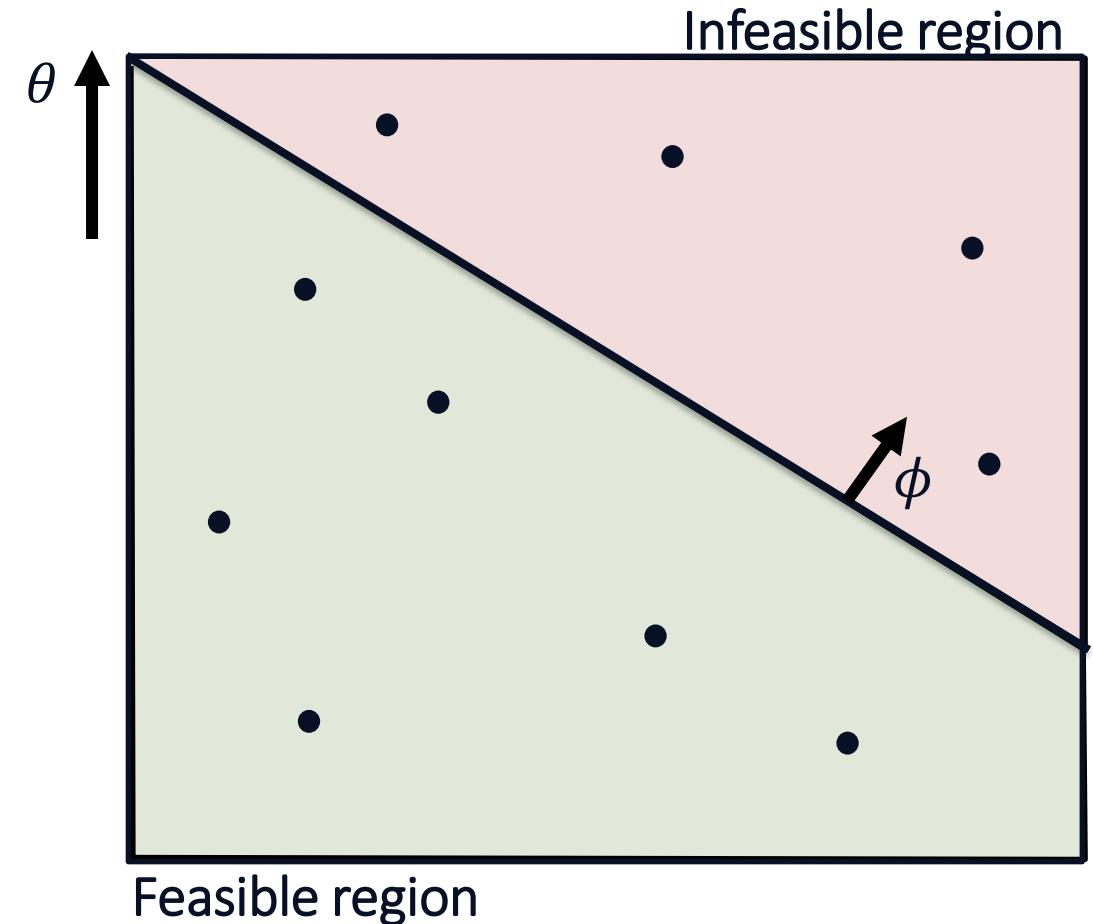


# Constrained linear best-arm identification (CBAI)

Known set of arms  $\mathcal{X} \subset \mathbb{R}^d$

Known reward parameter  $\theta \in \mathbb{R}^d$

Unknown constraint parameter  $\phi \in \mathbb{R}^d$



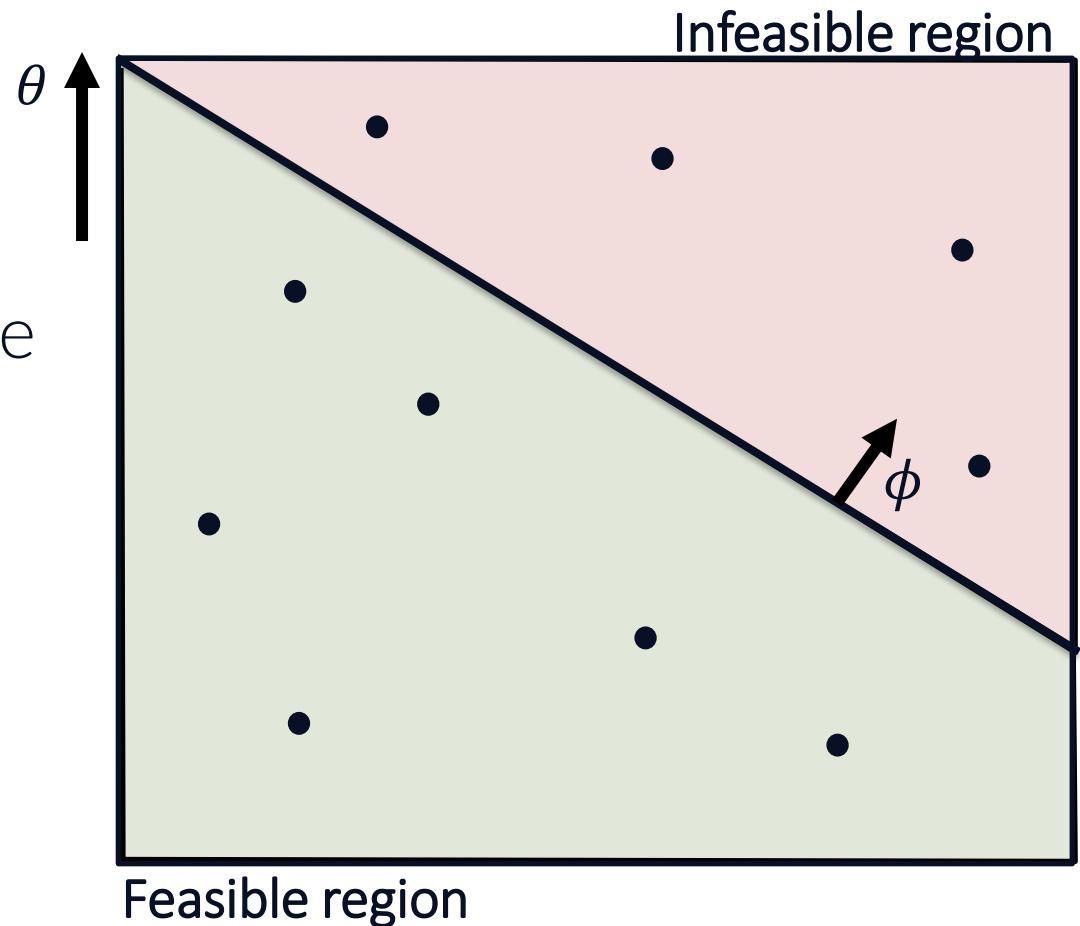
# Constrained linear best-arm identification (CBAI)

Known set of arms  $\mathcal{X} \subset \mathbb{R}^d$

Known reward parameter  $\theta \in \mathbb{R}^d$

Unknown constraint parameter  $\phi \in \mathbb{R}^d$

In each iteration, choose  $x \in \mathcal{X}$  & observe  
 $\phi^T x$  plus noise



# Constrained linear best-arm identification (CBAI)

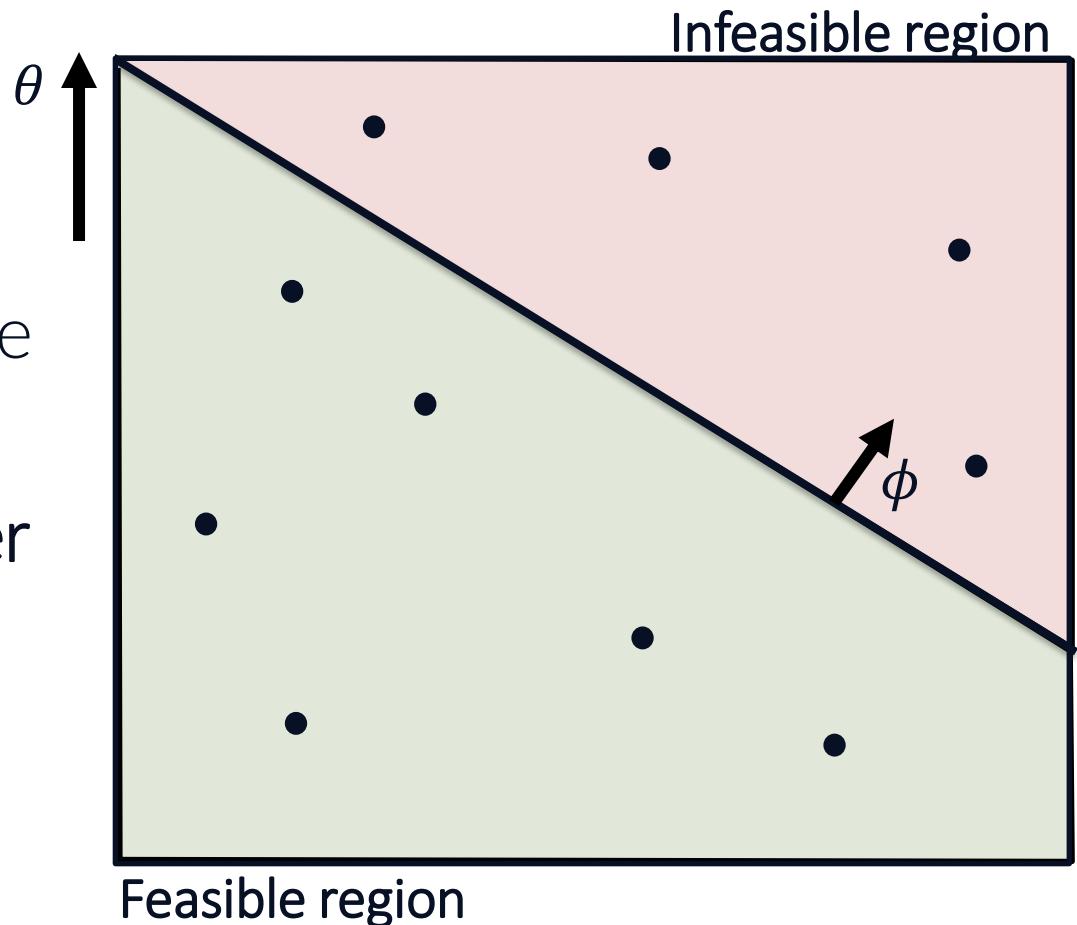
Known set of arms  $\mathcal{X} \subset \mathbb{R}^d$

Known reward parameter  $\theta \in \mathbb{R}^d$

Unknown constraint parameter  $\phi \in \mathbb{R}^d$

In each iteration, choose  $x \in \mathcal{X}$  & observe  
 $\phi^T x$  plus noise

→ Need to estimate constraint parameter



# Constrained linear best-arm identification (CBAI)

Known set of arms  $\mathcal{X} \subset \mathbb{R}^d$

Known reward parameter  $\theta \in \mathbb{R}^d$

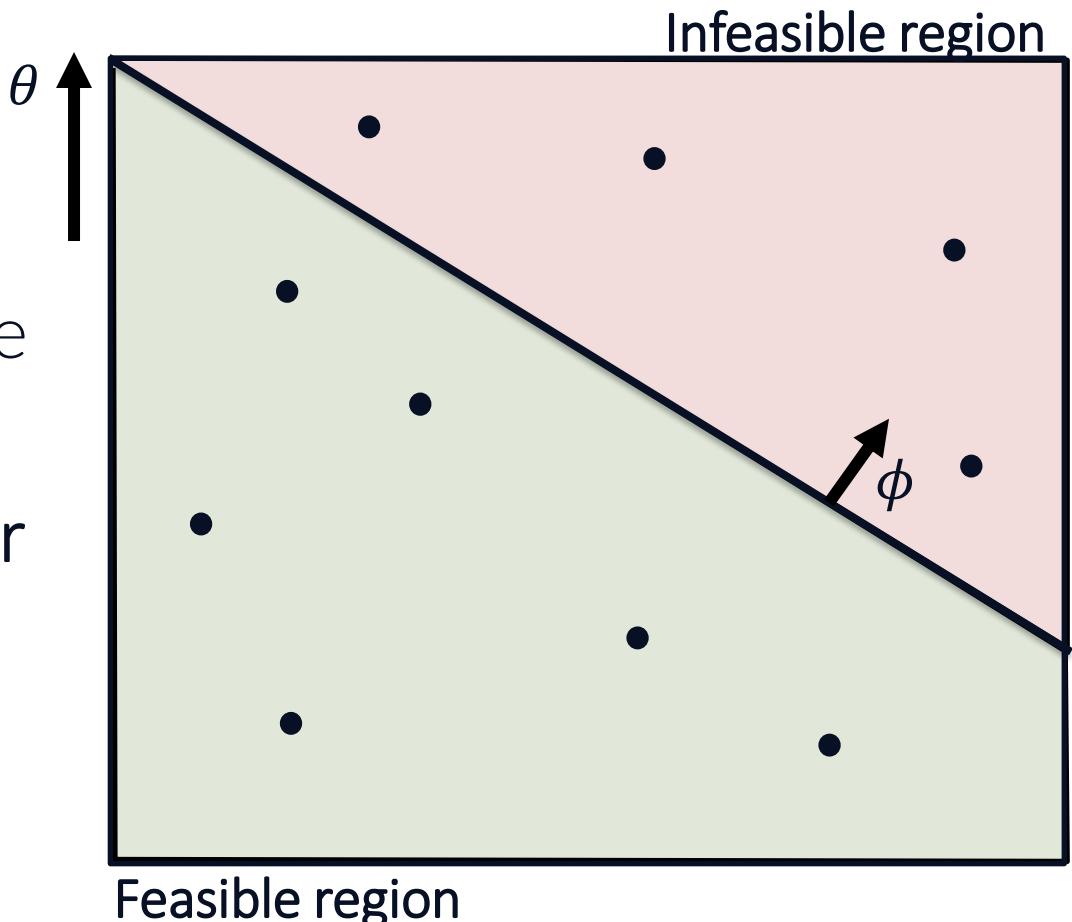
Unknown constraint parameter  $\phi \in \mathbb{R}^d$

In each iteration, choose  $x \in \mathcal{X}$  & observe  
 $\phi^T x$  plus noise

→ Need to estimate constraint parameter

Goal: Find  $x^* \in \operatorname{argmax}_{x \in \mathcal{X}, \phi^T x \leq 0} \theta^T x$

in as few iterations as possible



# Constrained linear best-arm identification (CBAI)

Known set of arms  $\mathcal{X} \subset \mathbb{R}^d$

Known reward parameter  $\theta \in \mathbb{R}^d$

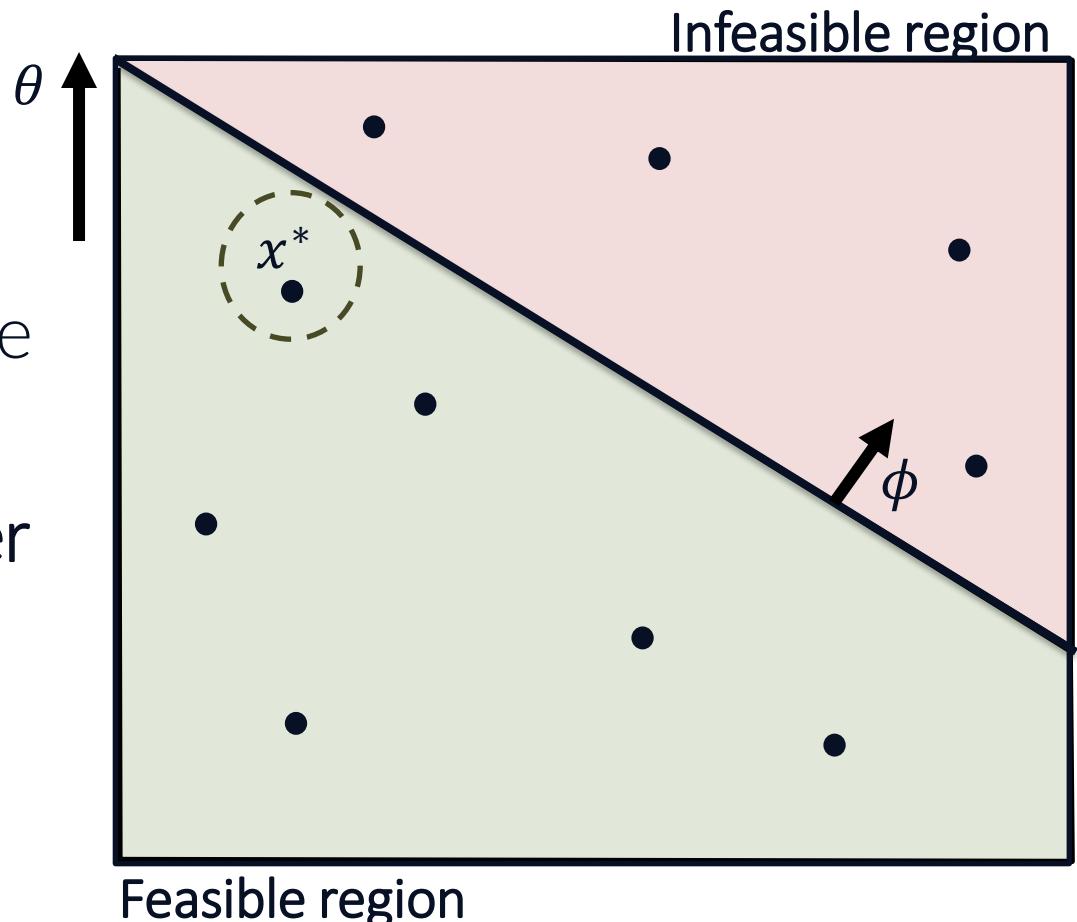
Unknown constraint parameter  $\phi \in \mathbb{R}^d$

In each iteration, choose  $x \in \mathcal{X}$  & observe  
 $\phi^T x$  plus noise

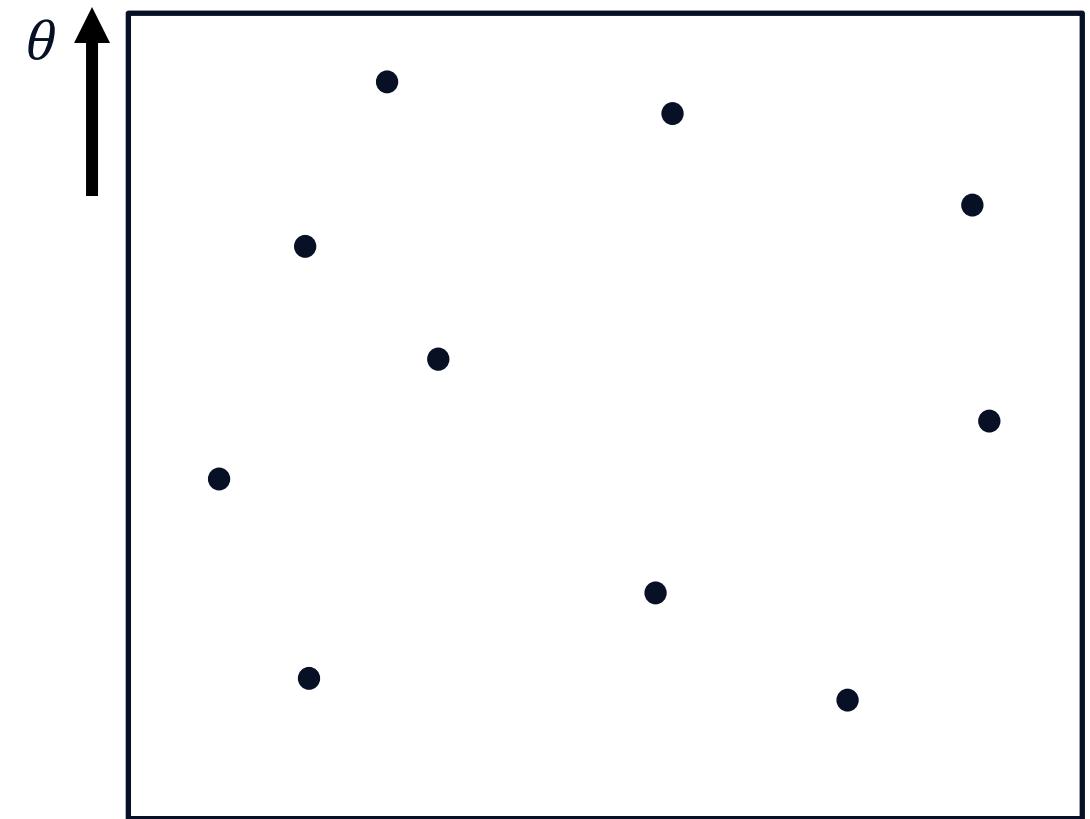
→ Need to estimate constraint parameter

Goal: Find  $x^* \in \operatorname{argmax}_{x \in \mathcal{X}, \phi^T x \leq 0} \theta^T x$

in as few iterations as possible

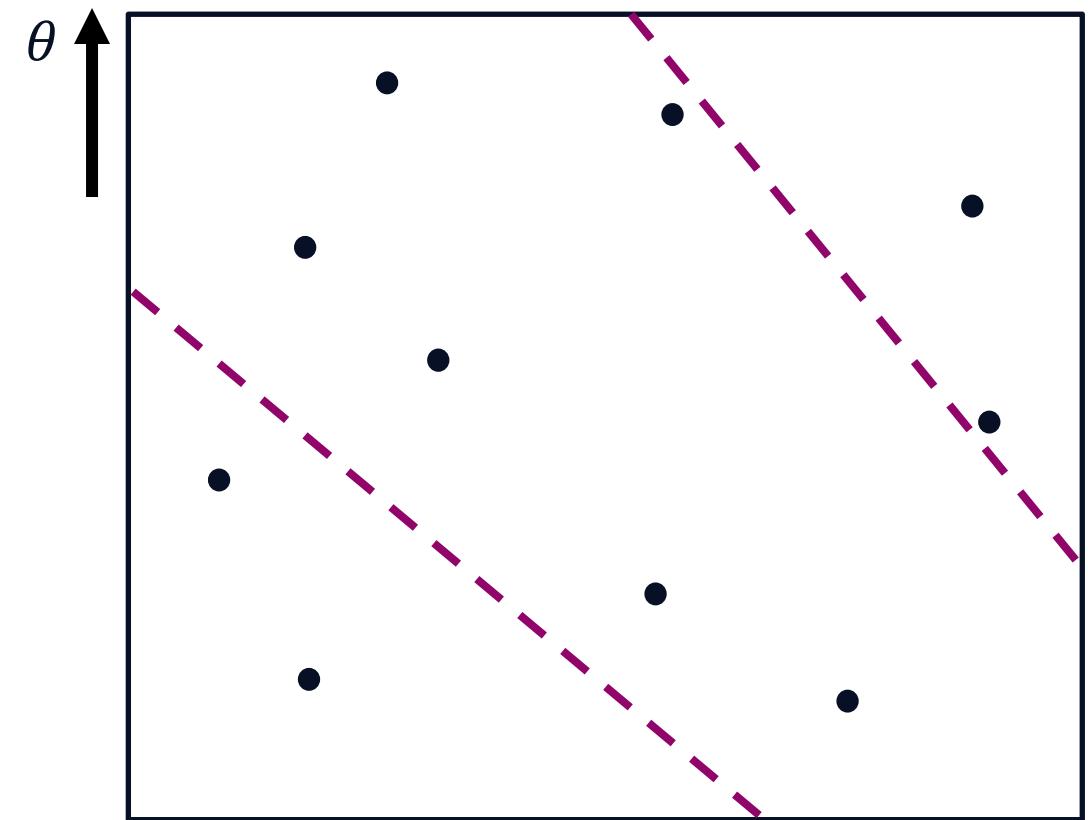


# Adaptive constraint learning (ACOL)



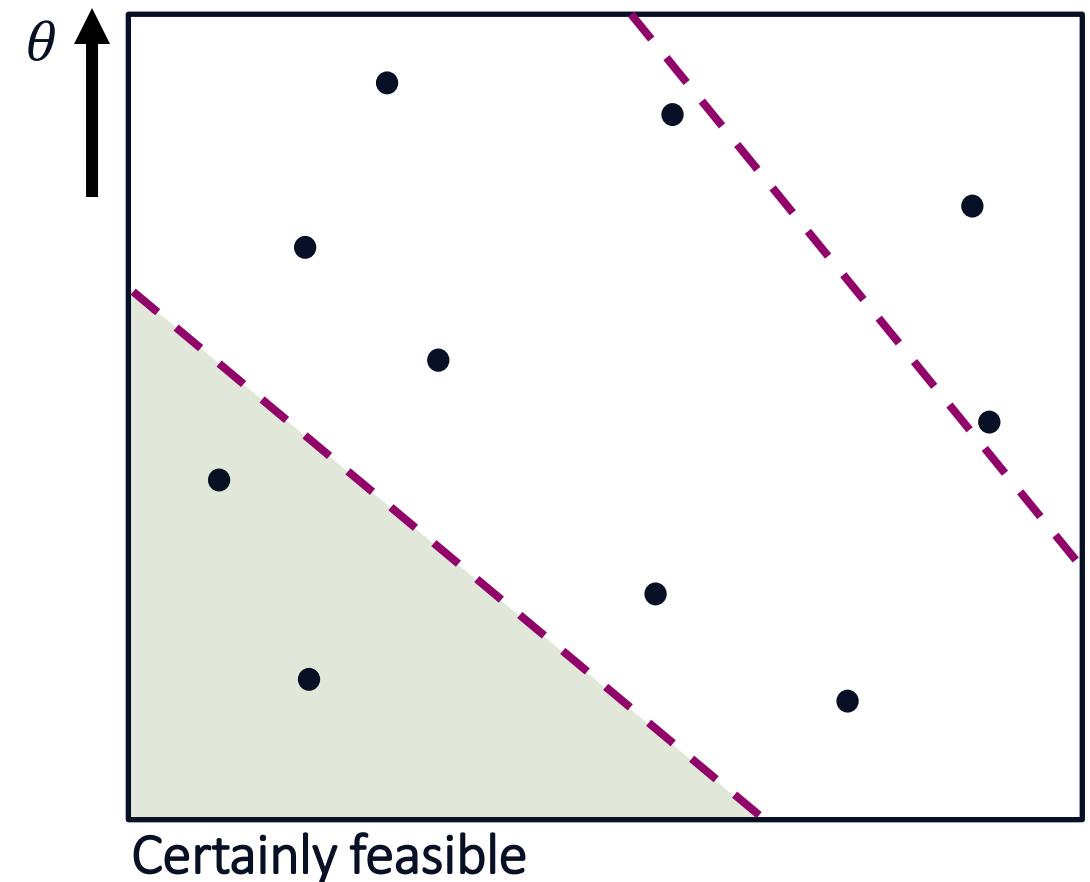
# Adaptive constraint learning (ACOL)

1. Estimate confidence regions around the estimated constraint



# Adaptive constraint learning (ACOL)

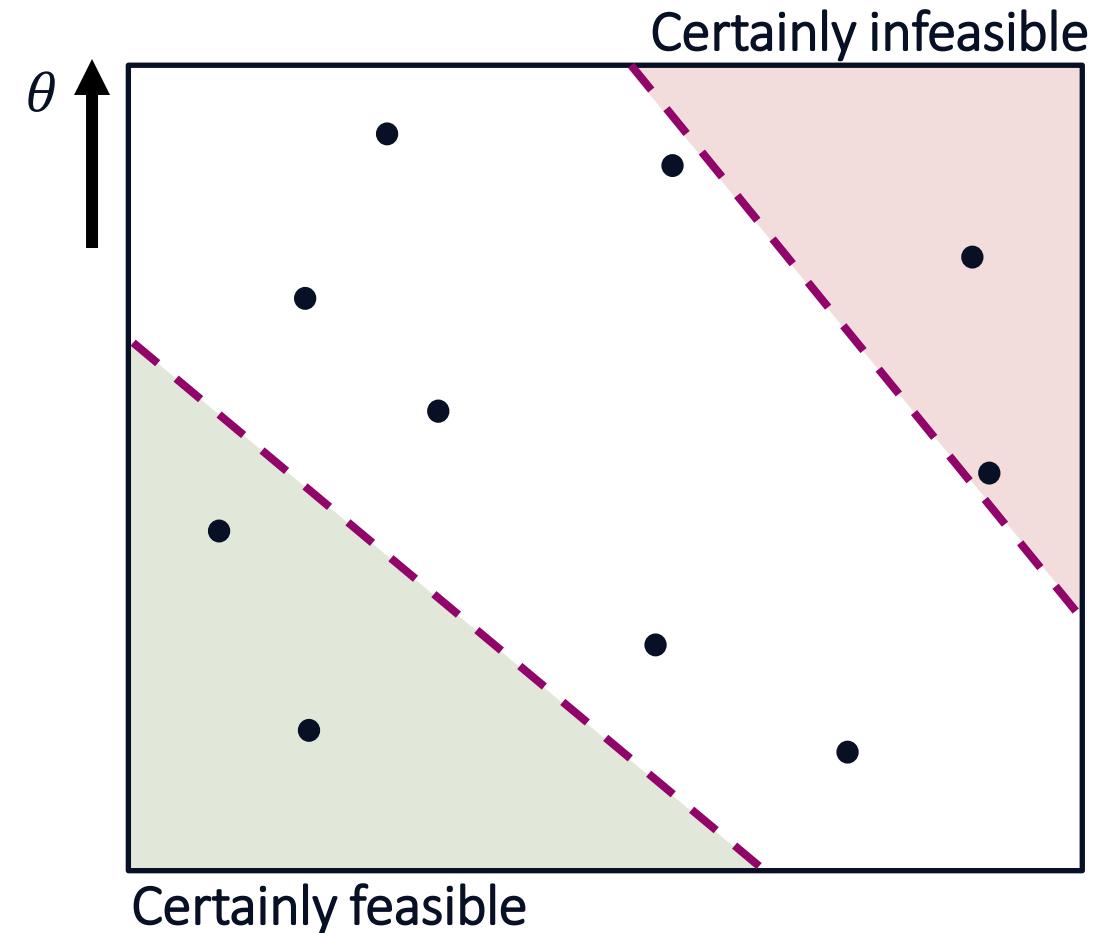
1. Estimate confidence regions around the estimated constraint
2. Determine certainly feasible arms



„Certainly“  $\hat{=}$  with high probability

# Adaptive constraint learning (ACOL)

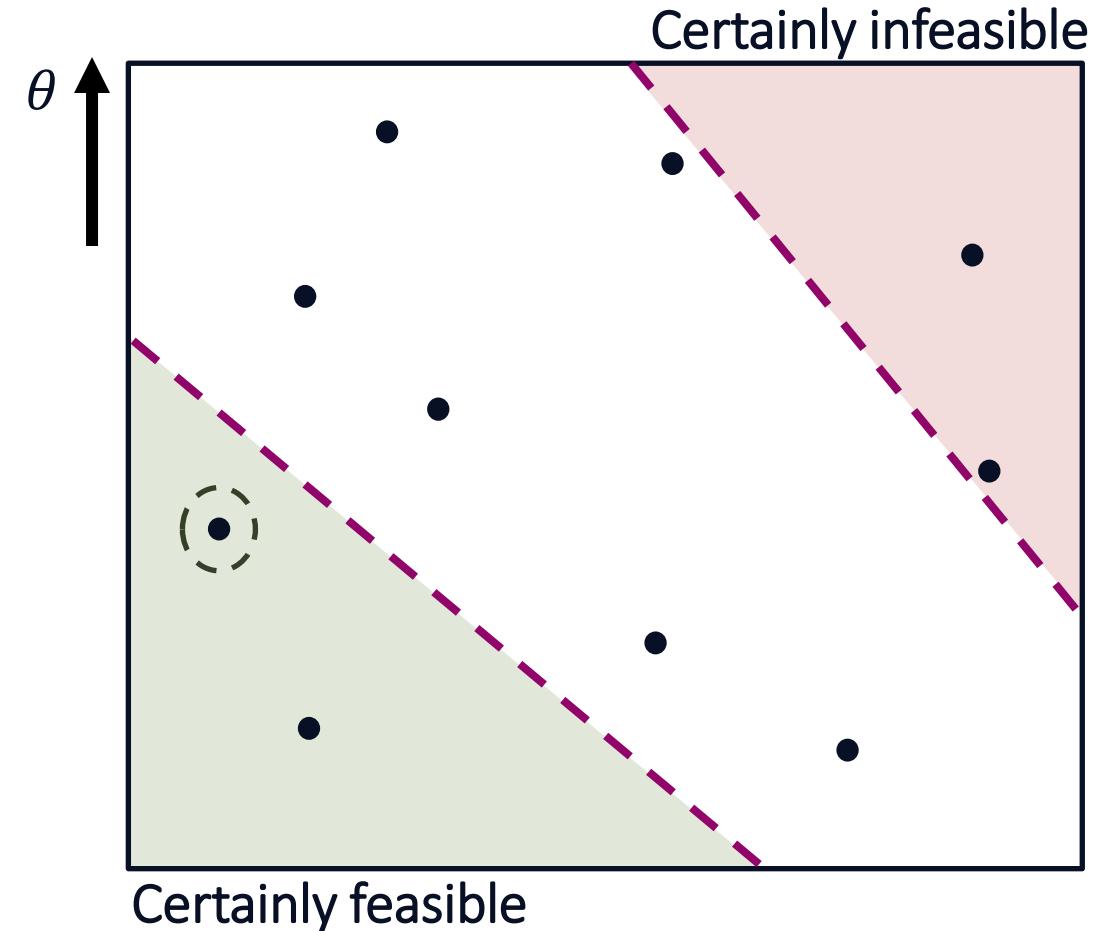
1. Estimate confidence regions around the estimated constraint
2. Determine certainly feasible arms
3. Determine certainly infeasible arms



„Certainly“  $\hat{=}$  with high probability

# Adaptive constraint learning (ACOL)

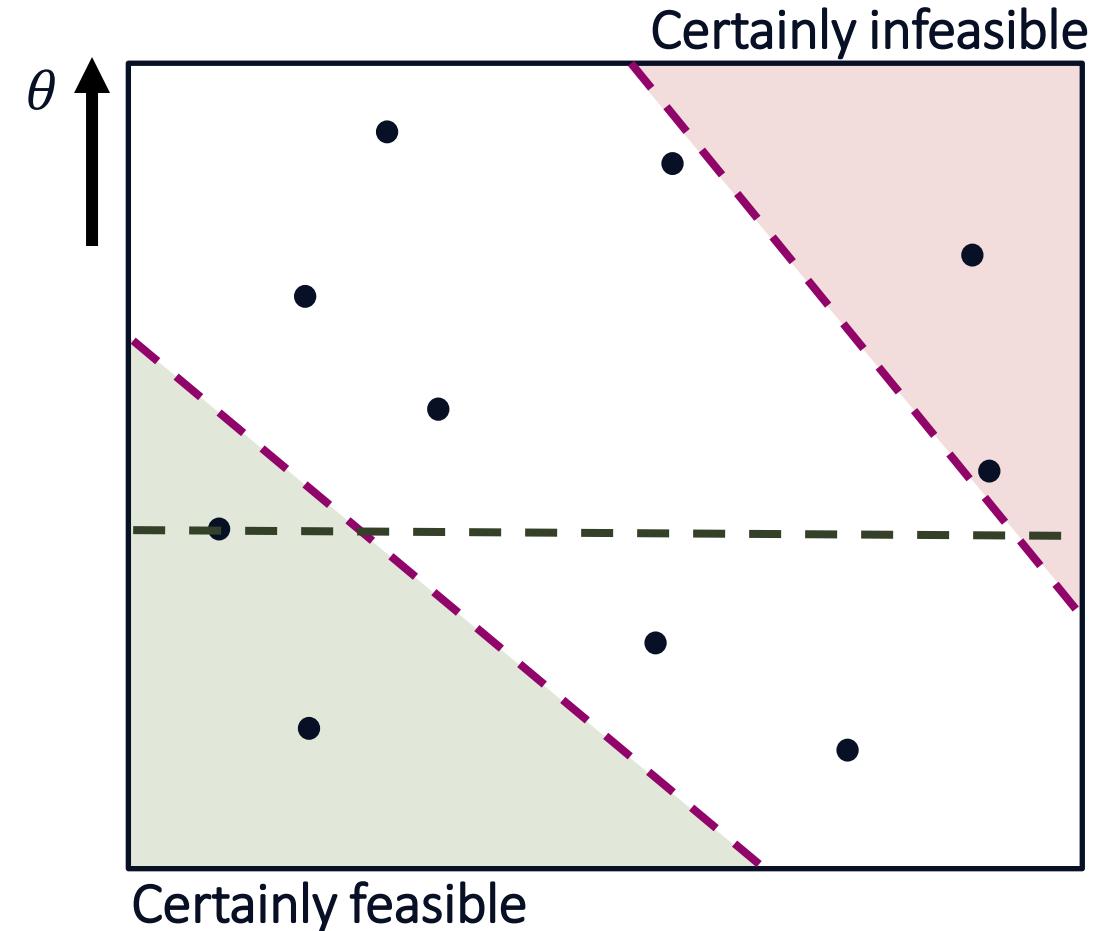
1. Estimate confidence regions around the estimated constraint
2. Determine certainly feasible arms
3. Determine certainly infeasible arms



„Certainly“  $\hat{=}$  with high probability

# Adaptive constraint learning (ACOL)

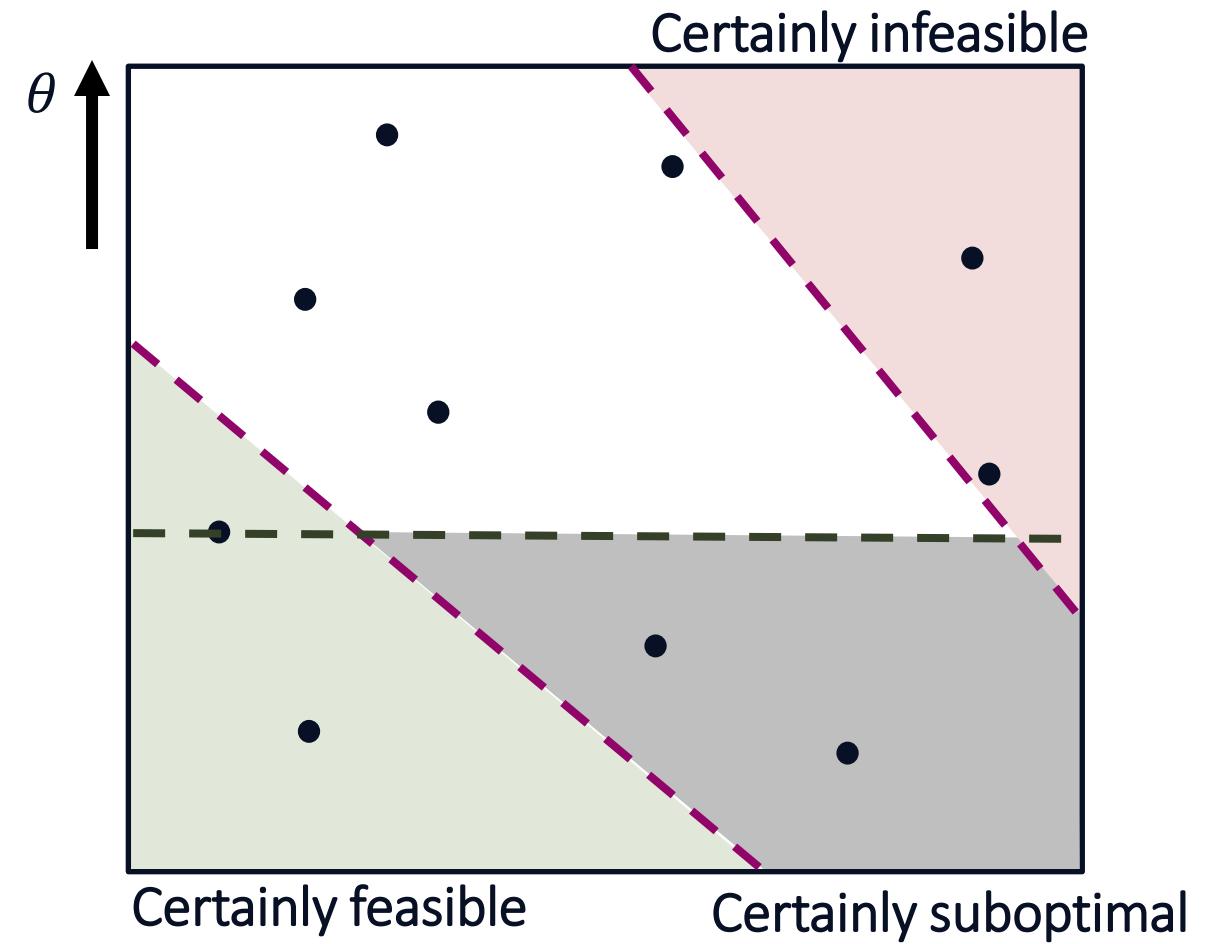
1. Estimate confidence regions around the estimated constraint
2. Determine certainly feasible arms
3. Determine certainly infeasible arms



„Certainly“  $\hat{=}$  with high probability

# Adaptive constraint learning (ACOL)

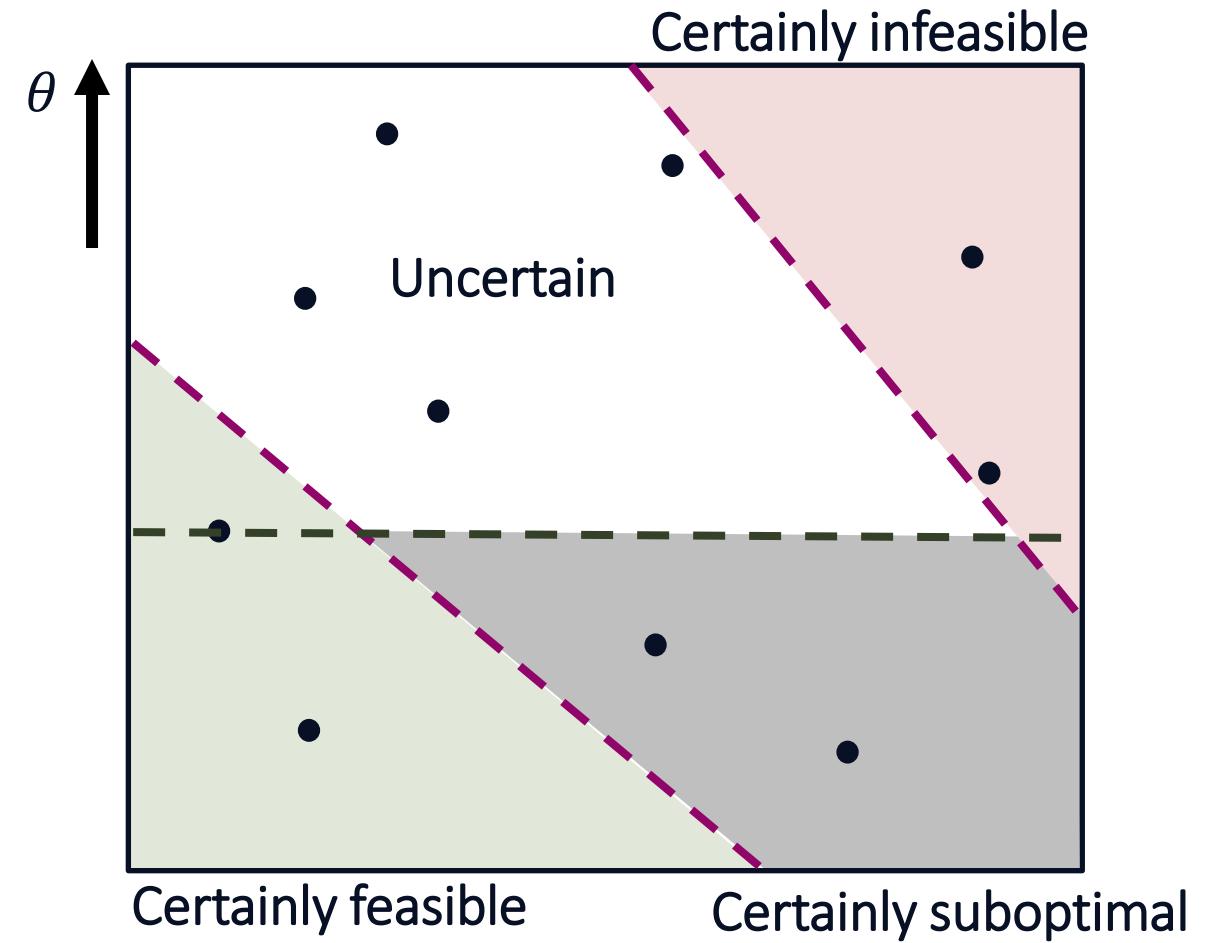
1. Estimate confidence regions around the estimated constraint
2. Determine certainly feasible arms
3. Determine certainly infeasible arms
4. Determine certainly suboptimal arms



„Certainly“  $\hat{=}$  with high probability

# Adaptive constraint learning (ACOL)

1. Estimate confidence regions around the estimated constraint
2. Determine certainly feasible arms
3. Determine certainly infeasible arms
4. Determine certainly suboptimal arms
5. Determine uncertain arms

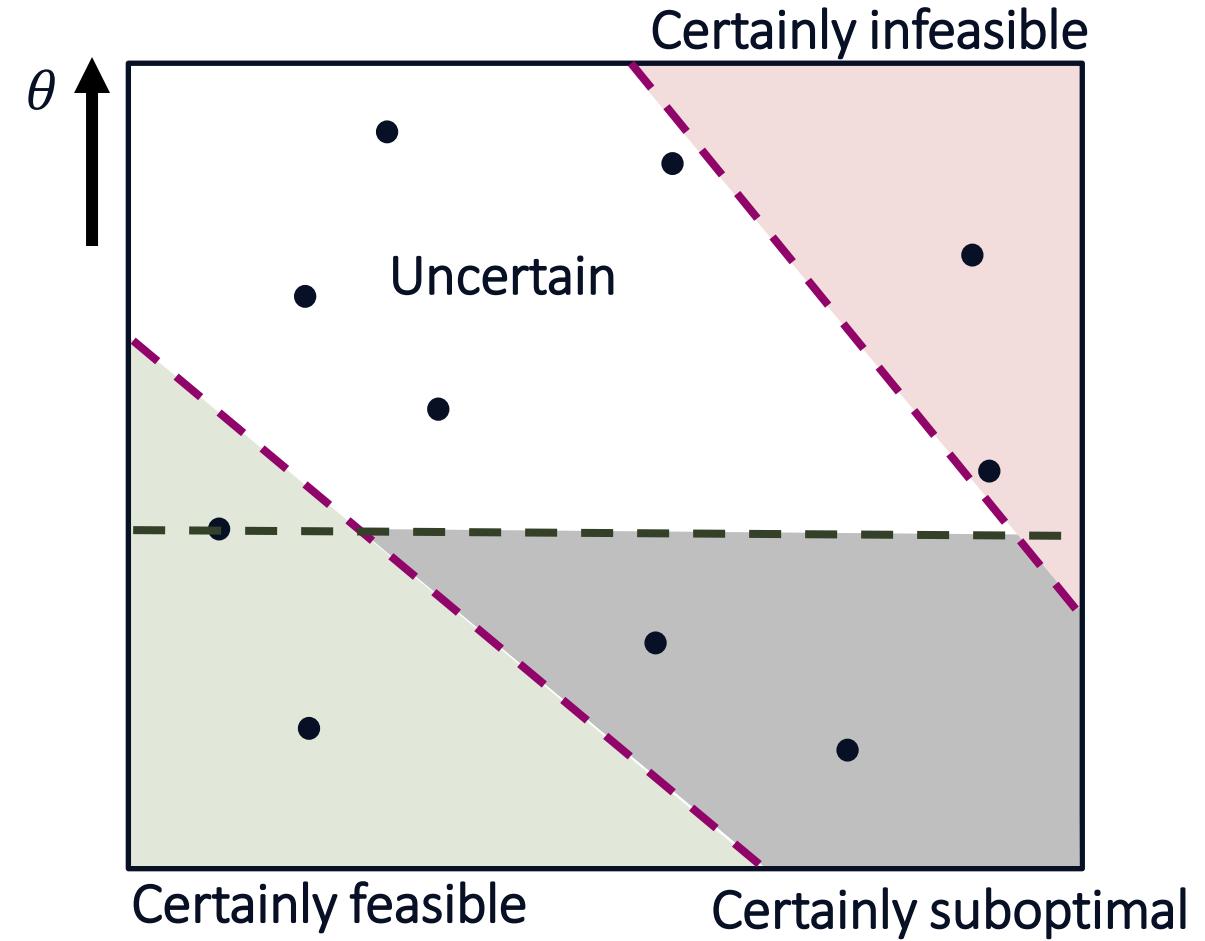


„Certainly“  $\hat{=}$  with high probability

# Adaptive constraint learning (ACOL)

1. Estimate confidence regions around the estimated constraint
2. Determine certainly feasible arms
3. Determine certainly infeasible arms
4. Determine certainly suboptimal arms
5. Determine uncertain arms
6. Select arms to reduce uncertainty about uncertain arms

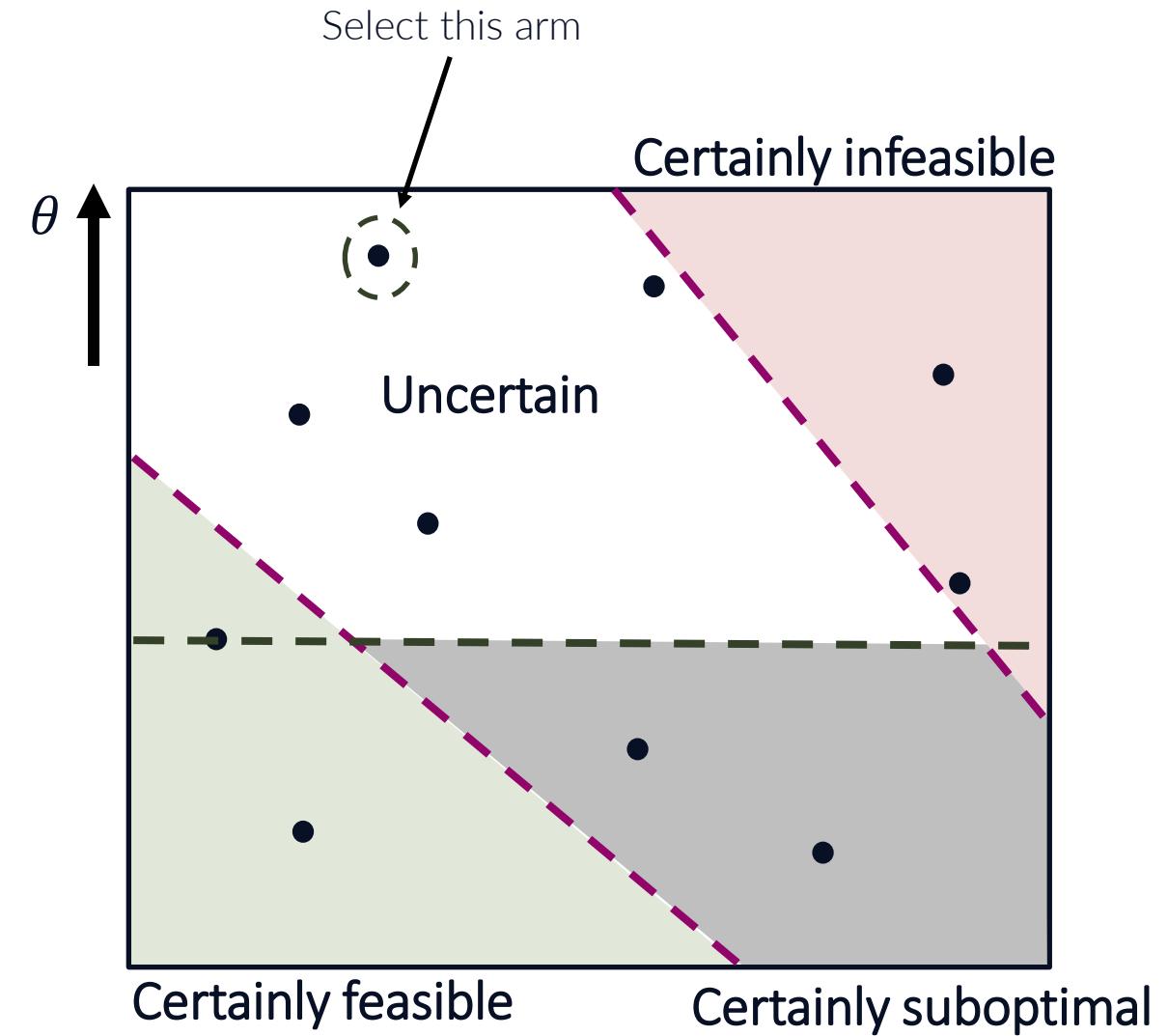
„Certainly“  $\hat{=}$  with high probability



# Adaptive constraint learning (ACOL)

1. Estimate confidence regions around the estimated constraint
2. Determine certainly feasible arms
3. Determine certainly infeasible arms
4. Determine certainly suboptimal arms
5. Determine uncertain arms
6. Select arms to reduce uncertainty about uncertain arms

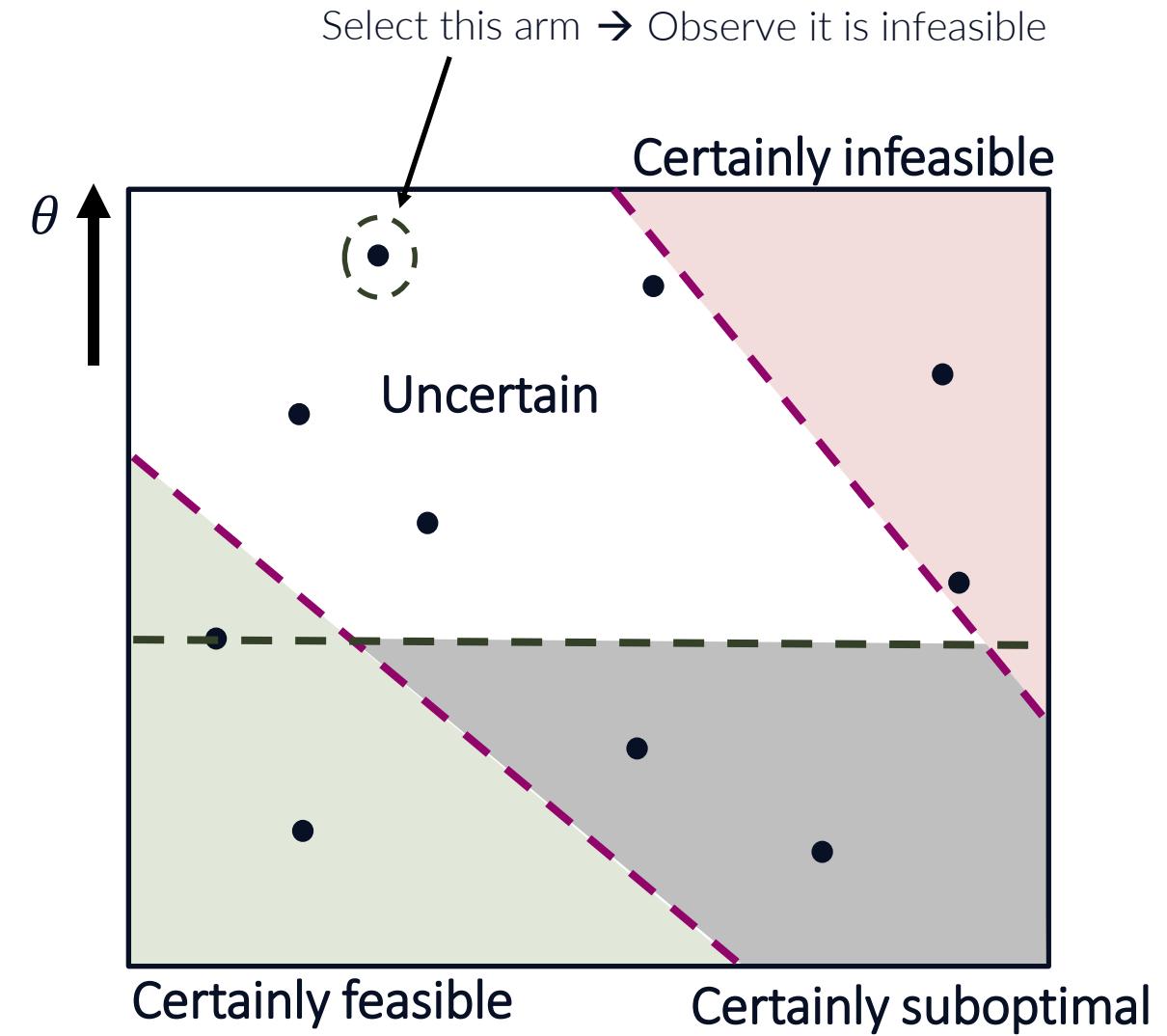
„Certainly“  $\hat{=}$  with high probability



# Adaptive constraint learning (ACOL)

1. Estimate confidence regions around the estimated constraint
2. Determine certainly feasible arms
3. Determine certainly infeasible arms
4. Determine certainly suboptimal arms
5. Determine uncertain arms
6. Select arms to reduce uncertainty about uncertain arms

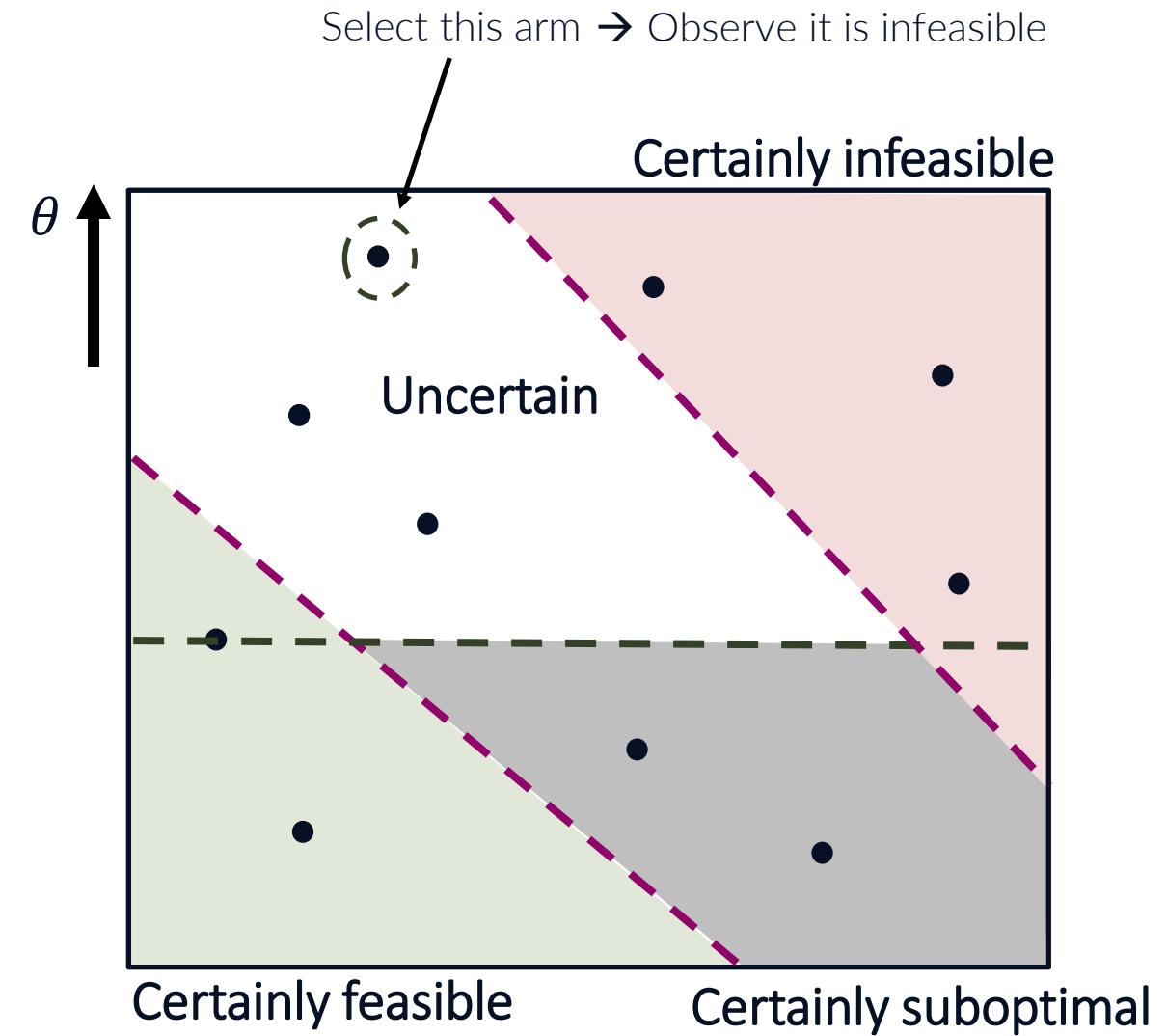
„Certainly“  $\hat{=}$  with high probability



# Adaptive constraint learning (ACOL)

1. Estimate confidence regions around the estimated constraint
2. Determine certainly feasible arms
3. Determine certainly infeasible arms
4. Determine certainly suboptimal arms
5. Determine uncertain arms
6. Select arms to reduce uncertainty about uncertain arms

„Certainly“  $\hat{=}$  with high probability



# We provide a tight sample complexity guarantee for ACOL

## CBAI lower bound (informal)

The number of samples necessary to solve a CBAI problem is lower bounded by

$$\min_{\lambda} \max_{x \in \mathcal{X}_{\theta}^{\geq}(x^*)} \frac{|x|_{A_{\lambda}^{-1}}^2}{(\phi^T x)^2}$$

# We provide a tight sample complexity guarantee for ACOL

## CBAI lower bound (informal)

The number of samples necessary to solve a CBAI problem is lower bounded by

$$\min_{\lambda} \max_{x \in \mathcal{X}_{\theta}^{\geq}(x^*)} \frac{|x|_{A_{\lambda}^{-1}}^2}{(\phi^T x)^2}$$

## ACOL sample complexity (informal)

ACOL returns the correct optimal arm with a number of samples upper bounded by

# We provide a tight sample complexity guarantee for ACOL

## CBAI lower bound (informal)

The number of samples necessary to solve a CBAI problem is lower bounded by

$$\min_{\lambda} \max_{x \in \mathcal{X}_{\theta}^{\geq}(x^*)} \frac{|x|_{A_{\lambda}^{-1}}^2}{(\phi^T x)^2}$$

## ACOL sample complexity (informal)

ACOL returns the correct optimal arm with a number of samples upper bounded by

$$\min_{\lambda} \max_{x \in \mathcal{X}} \frac{|x|_{A_{\lambda}^{-1}}^2}{(\phi^T x)^2}$$

# We provide a tight sample complexity guarantee for ACOL

## CBAI lower bound (informal)

The number of samples necessary to solve a CBAI problem is lower bounded by

$$\min_{\lambda} \max_{x \in \mathcal{X}_{\theta}^{\geq}(x^*)} \frac{|x|_{A_{\lambda}^{-1}}^2}{(\phi^T x)^2}$$

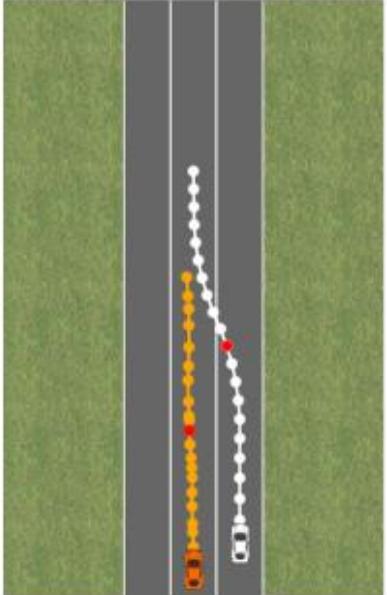
## ACOL sample complexity (informal)

ACOL returns the correct optimal arm with a number of samples upper bounded by

$$\min_{\lambda} \max_{x \in \mathcal{X}} \frac{|x|_{A_{\lambda}^{-1}}^2}{(\phi^T x)^2}$$

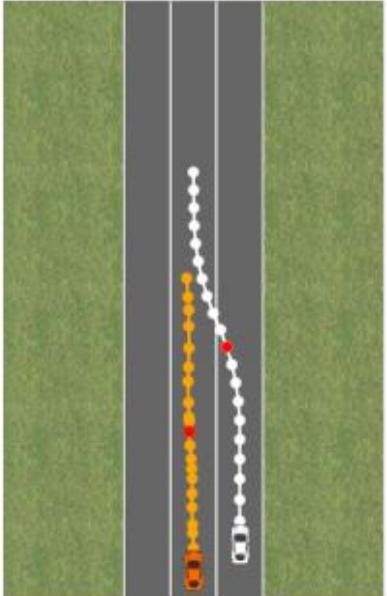
# Adaptive constraint learning works well in simulations

# Adaptive constraint learning works well in simulations



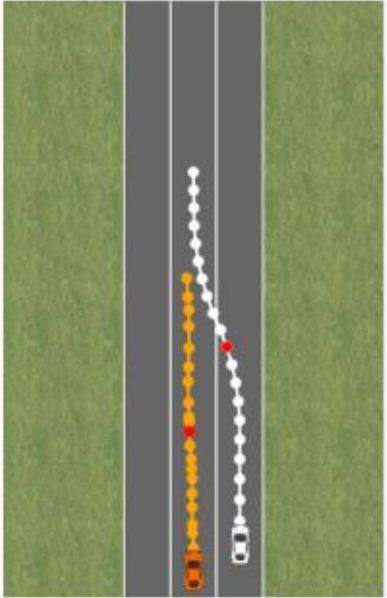
- Driving simulation with known reward but unknown constraints

# Adaptive constraint learning works well in simulations

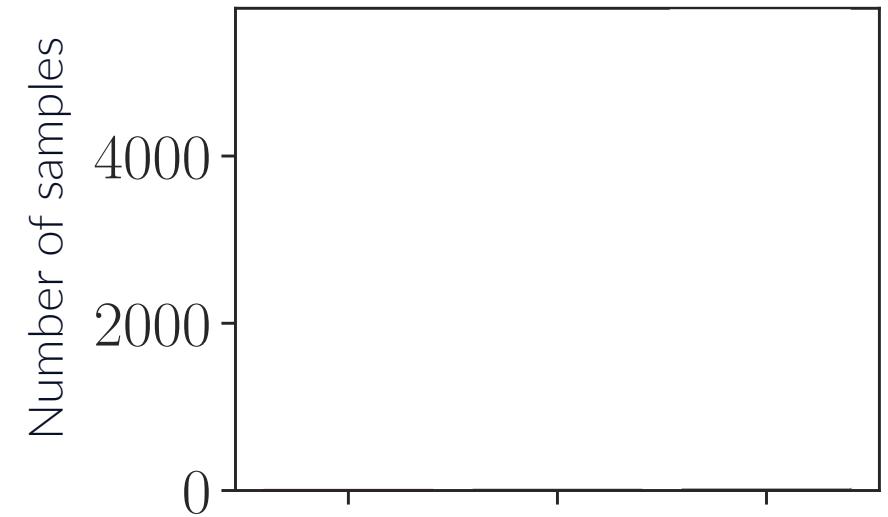


- Driving simulation with known reward but unknown constraints
- We obtain binary observations whether a trajectory is feasible

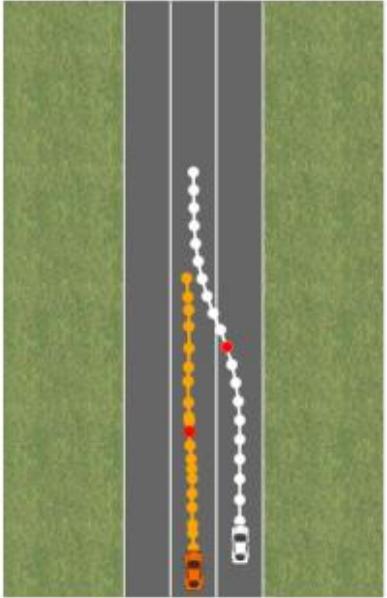
# Adaptive constraint learning works well in simulations



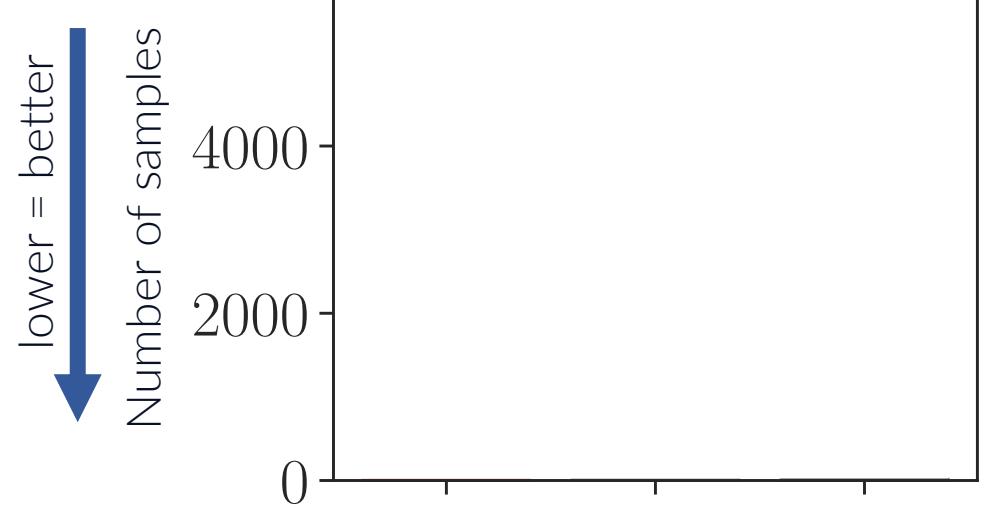
- Driving simulation with known reward but unknown constraints
- We obtain binary observations whether a trajectory is feasible
- How many samples until we can identify the best controller?



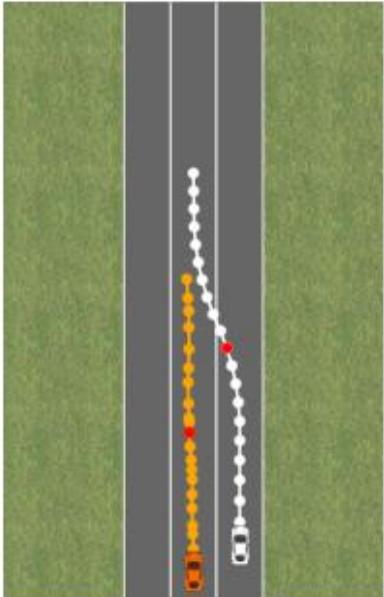
# Adaptive constraint learning works well in simulations



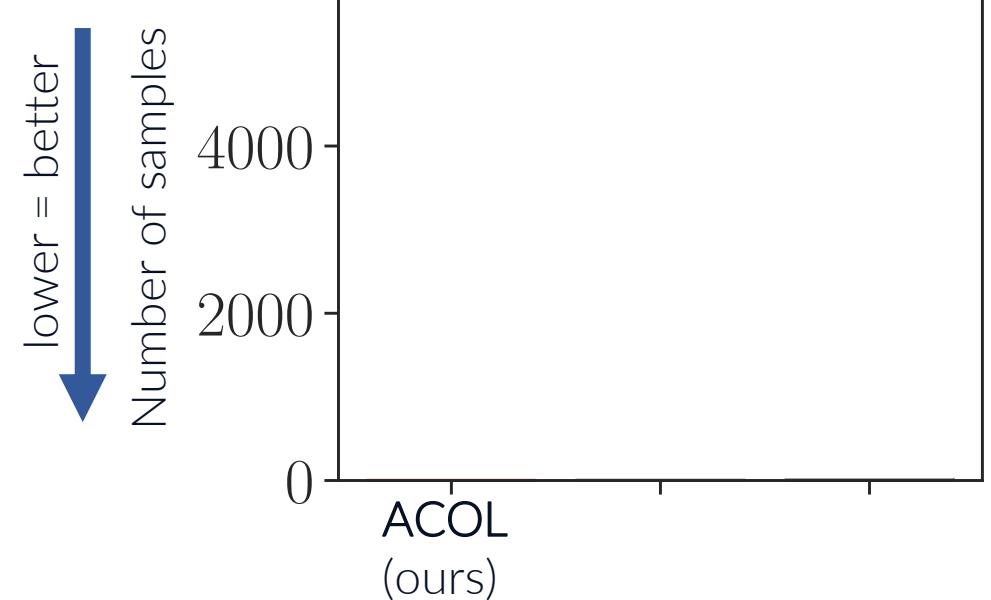
- Driving simulation with known reward but unknown constraints
- We obtain binary observations whether a trajectory is feasible
- How many samples until we can identify the best controller?



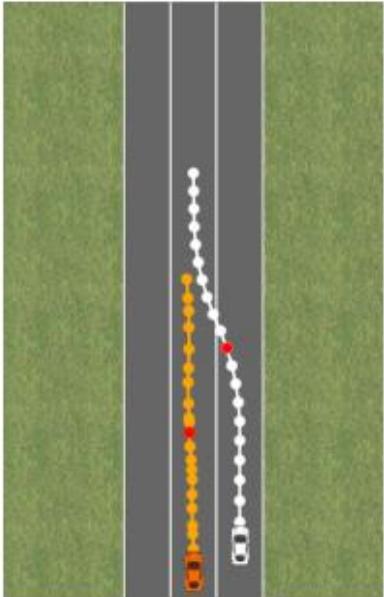
# Adaptive constraint learning works well in simulations



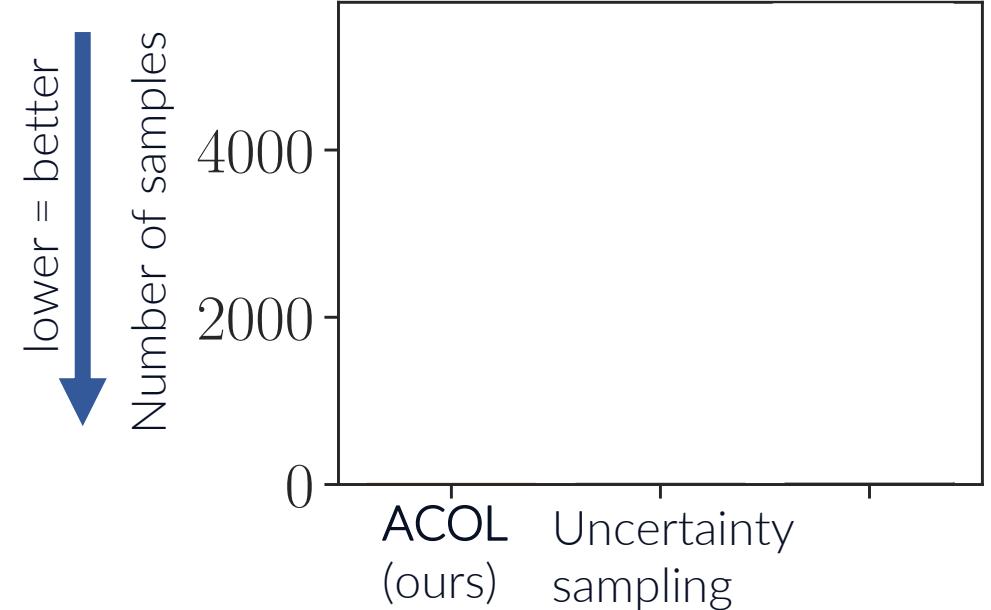
- Driving simulation with known reward but unknown constraints
- We obtain binary observations whether a trajectory is feasible
- How many samples until we can identify the best controller?



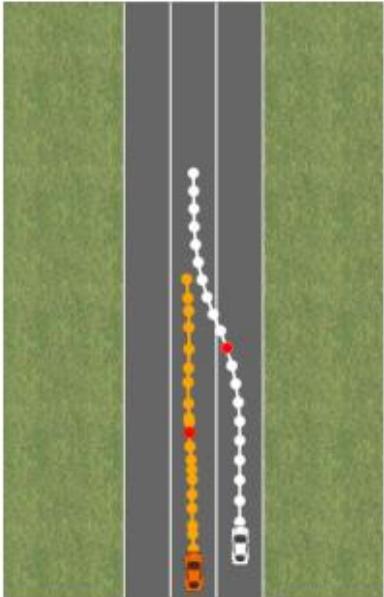
# Adaptive constraint learning works well in simulations



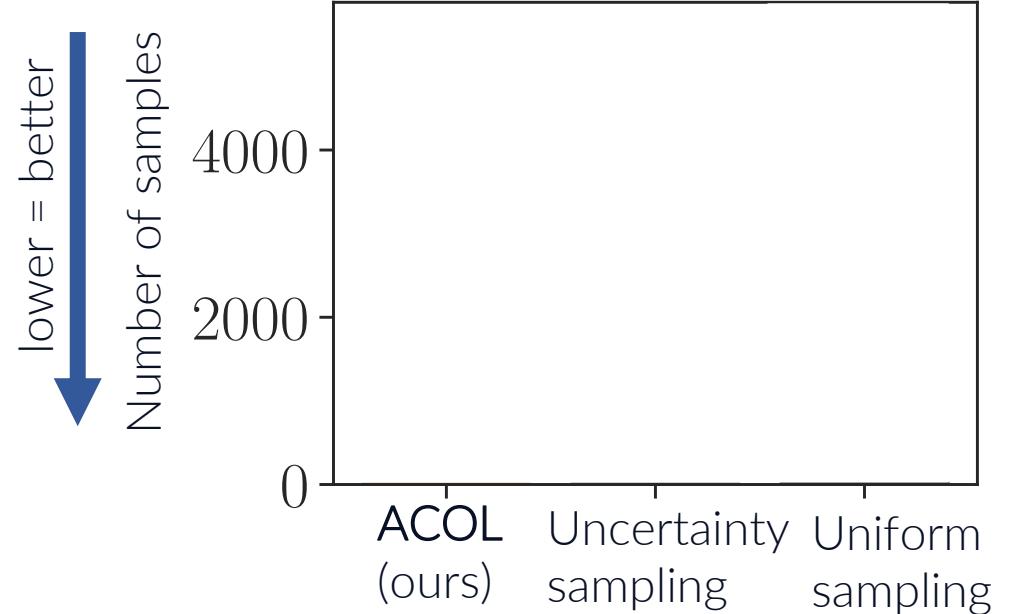
- Driving simulation with known reward but unknown constraints
- We obtain binary observations whether a trajectory is feasible
- How many samples until we can identify the best controller?



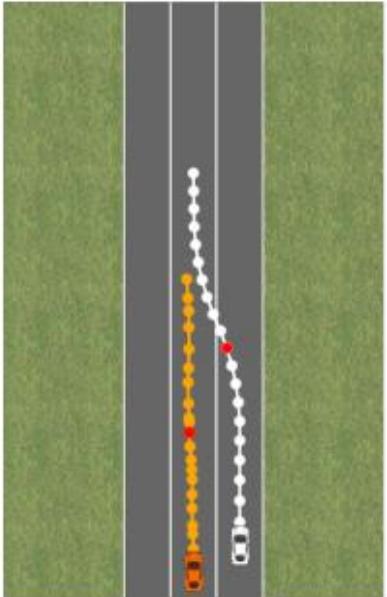
# Adaptive constraint learning works well in simulations



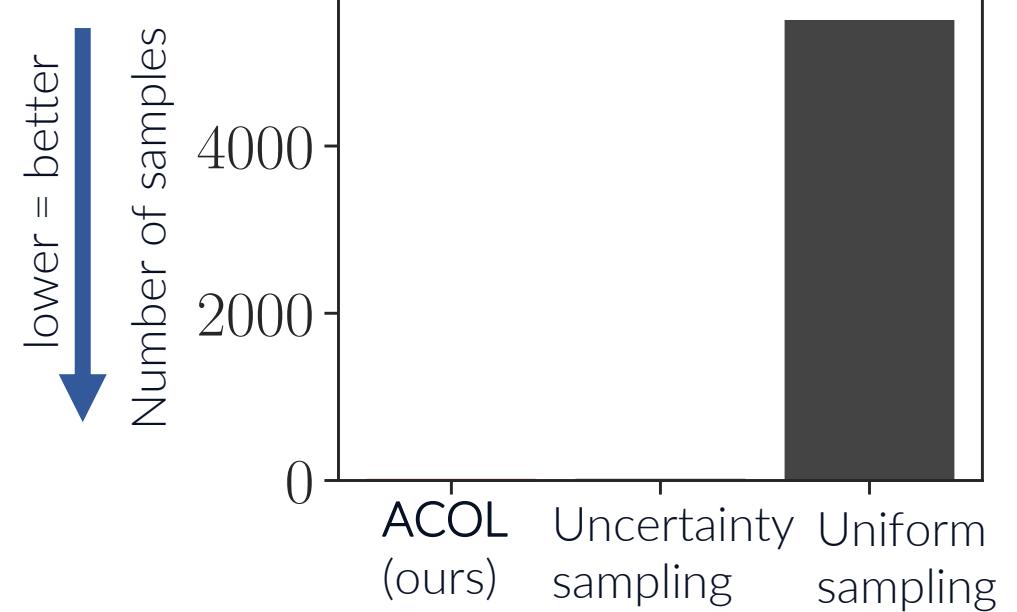
- Driving simulation with known reward but unknown constraints
- We obtain binary observations whether a trajectory is feasible
- How many samples until we can identify the best controller?



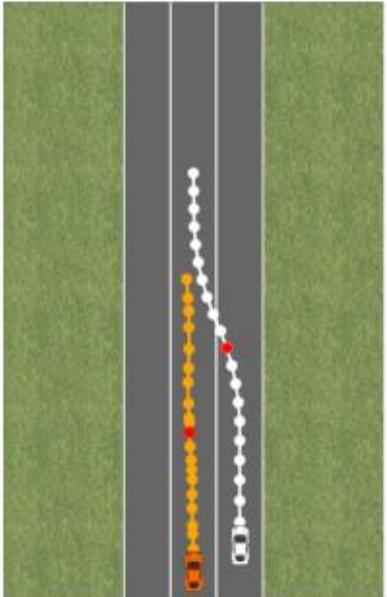
# Adaptive constraint learning works well in simulations



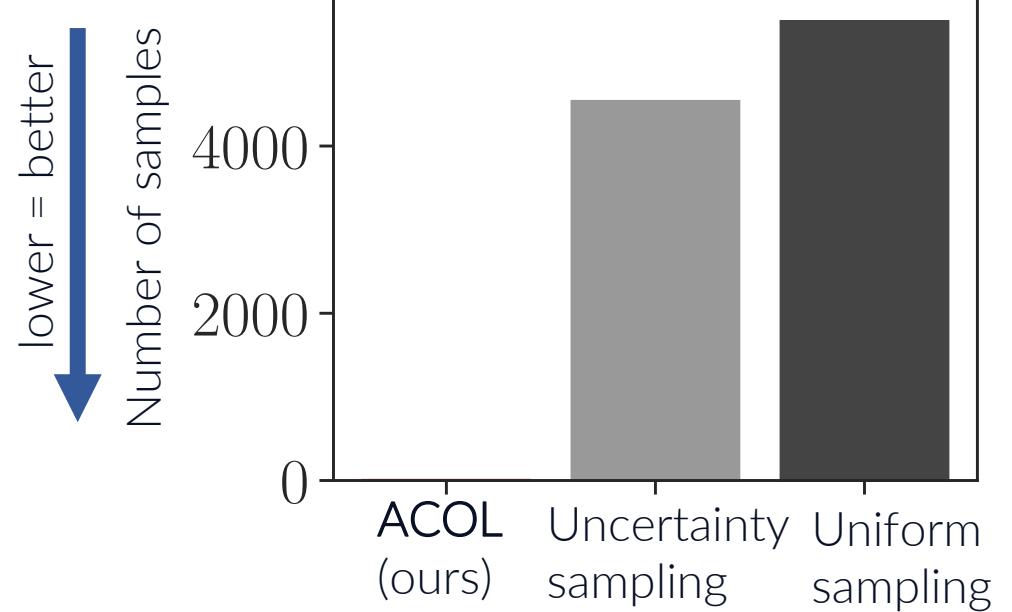
- Driving simulation with known reward but unknown constraints
- We obtain binary observations whether a trajectory is feasible
- How many samples until we can identify the best controller?



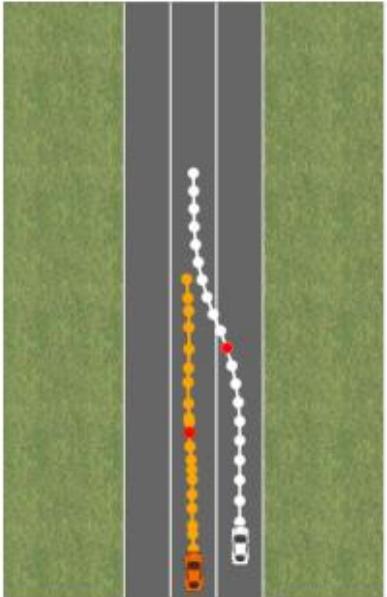
# Adaptive constraint learning works well in simulations



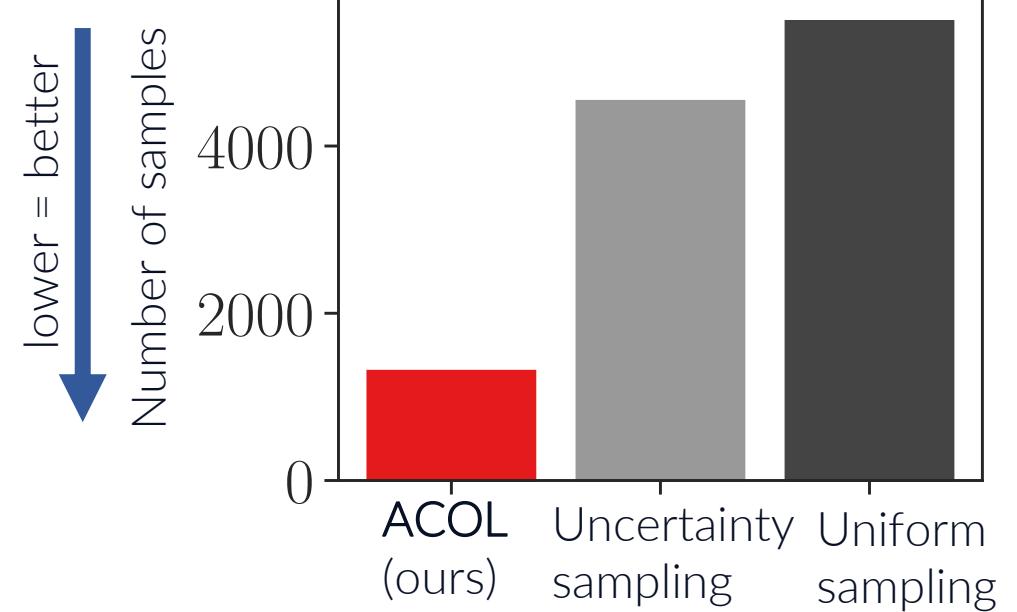
- Driving simulation with known reward but unknown constraints
- We obtain binary observations whether a trajectory is feasible
- How many samples until we can identify the best controller?



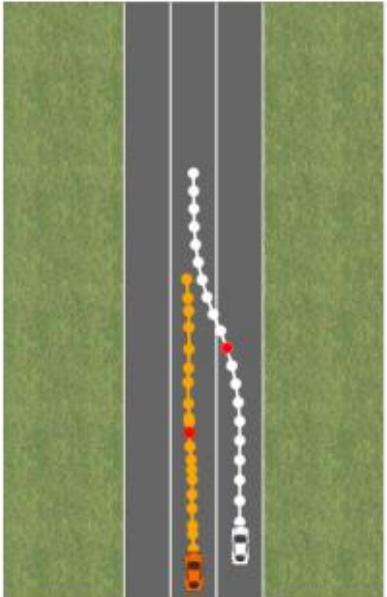
# Adaptive constraint learning works well in simulations



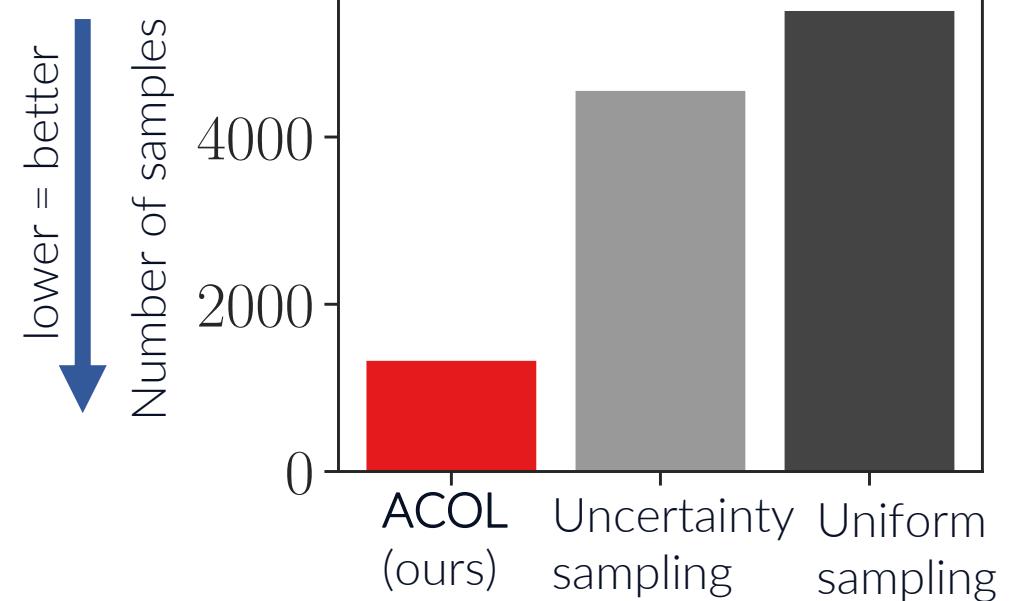
- Driving simulation with known reward but unknown constraints
- We obtain binary observations whether a trajectory is feasible
- How many samples until we can identify the best controller?



# Adaptive constraint learning works well in simulations

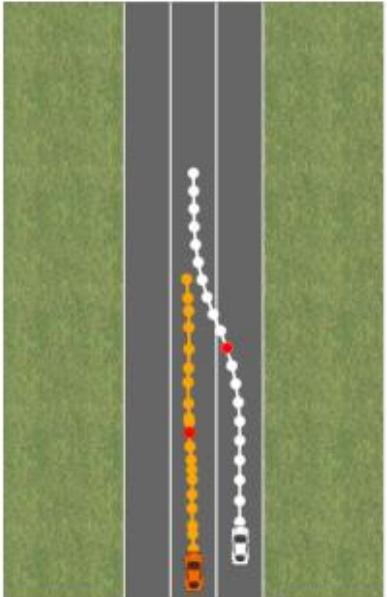


- Driving simulation with known reward but unknown constraints
- We obtain binary observations whether a trajectory is feasible
- How many samples until we can identify the best controller?

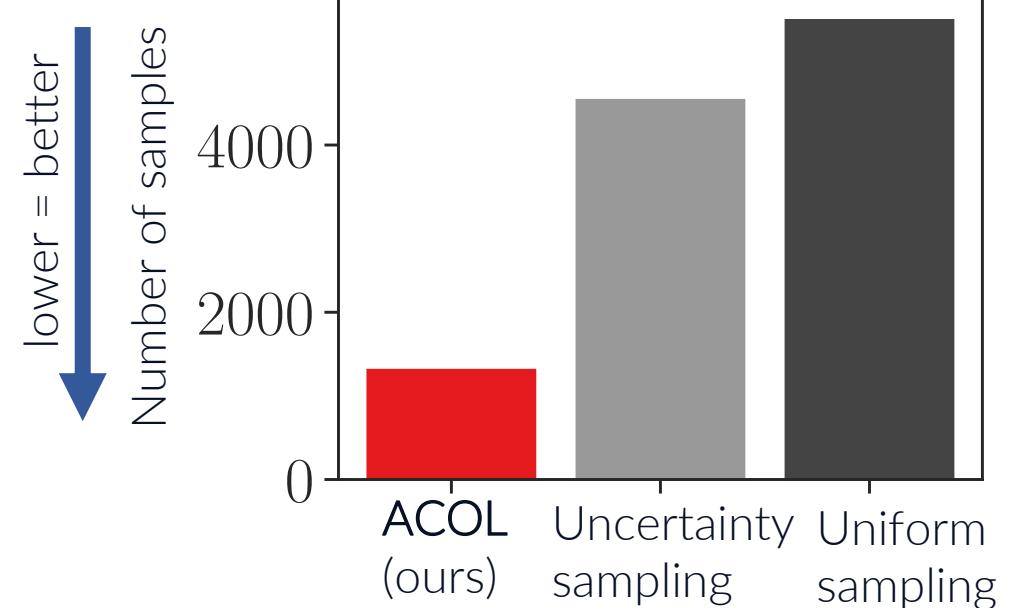


- Constraints are a natural and robust way to represent human preferences

# Adaptive constraint learning works well in simulations

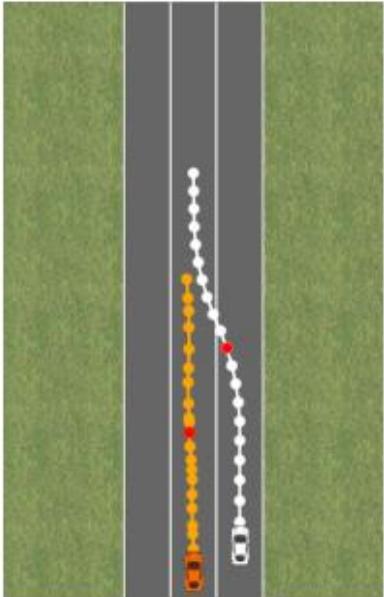


- Driving simulation with known reward but unknown constraints
- We obtain binary observations whether a trajectory is feasible
- How many samples until we can identify the best controller?

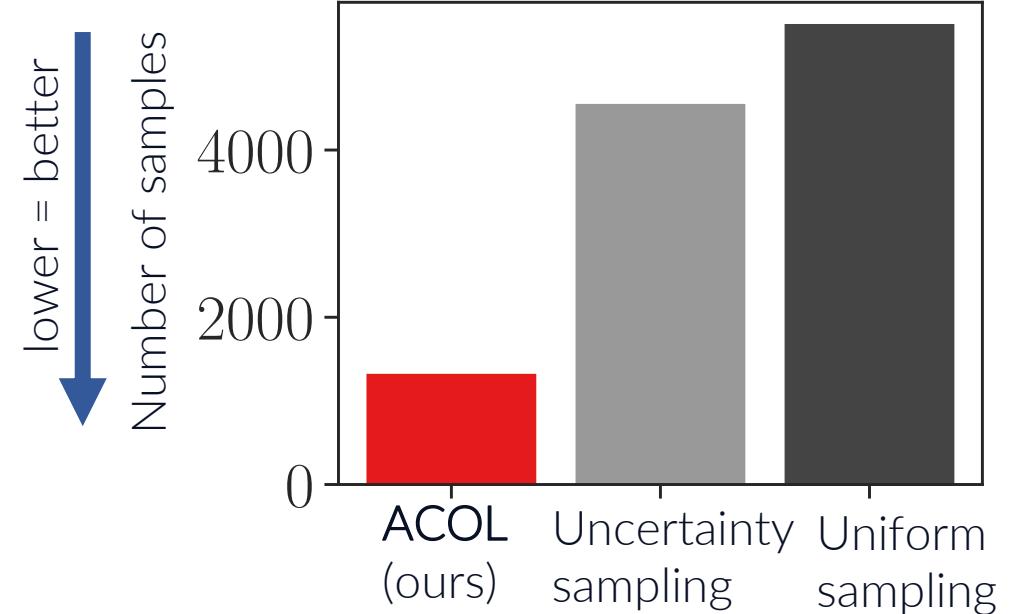


- Constraints are a natural and robust way to represent human preferences
- Adaptive Constraint Learning can efficiently learn constraints in linear bandits

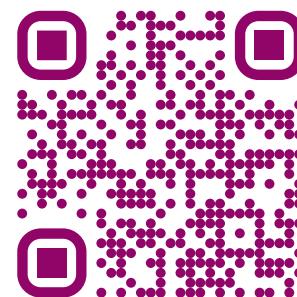
# Adaptive constraint learning works well in simulations



- Driving simulation with known reward but unknown constraints
- We obtain binary observations whether a trajectory is feasible
- How many samples until we can identify the best controller?



- Constraints are a natural and robust way to represent human preferences
- Adaptive Constraint Learning can efficiently learn constraints in linear bandits



[https://arxiv.org/  
abs/2206.05255](https://arxiv.org/abs/2206.05255)