

Approximate Bayesian Computation with Domain Expert in the Loop

Ayush Bharti¹, Louis Filstroff¹, Samuel Kaski^{1,2}

Department of Computer Science, Aalto University, Finland¹
Department of Computer Science, University of Manchester, UK²

July 19, 2022

Likelihood-free Inference

Setting: Inference for simulator-based models with intractable likelihoods

- Let data $y_{\text{obs}} = \{y_{\text{obs},i}\}_{i=1}^n$ be denoted by empirical distribution \mathbb{Q}^n .
- Simulator $\mathcal{M}_{\Theta} = \{\mathbb{P}_{\theta} : \theta \in \Theta \subset \mathbb{R}^q\}$ is a parametric family of distributions.

Aim: Given data y_{obs} , estimate θ s.t. \mathbb{Q}^n is “closest” to \mathbb{P}_{θ} .

Likelihood-free Inference

Setting: Inference for simulator-based models with intractable likelihoods

- Let data $y_{\text{obs}} = \{y_{\text{obs},i}\}_{i=1}^n$ be denoted by empirical distribution \mathbb{Q}^n .
- Simulator $\mathcal{M}_{\Theta} = \{\mathbb{P}_{\theta} : \theta \in \Theta \subset \mathbb{R}^q\}$ is a parametric family of distributions.

Aim: Given data y_{obs} , estimate θ s.t. \mathbb{Q}^n is “closest” to \mathbb{P}_{θ} .

Problem: The likelihood function $p(y_{\text{obs}}|\theta)$ is intractable and cannot be evaluated numerically.

Therefore, classical estimation techniques such as

Maximum a Posteriori (MAP) estimate: $\hat{\theta}_{\text{MAP}} = \operatorname{argmax}_{\theta} p(y_{\text{obs}}|\theta)p(\theta)$

Maximum Likelihood (ML) estimate: $\hat{\theta}_{\text{ML}} = \operatorname{argmax}_{\theta} p(y_{\text{obs}}|\theta)$

are unrealizable.

Approximate Bayesian Computation (ABC)

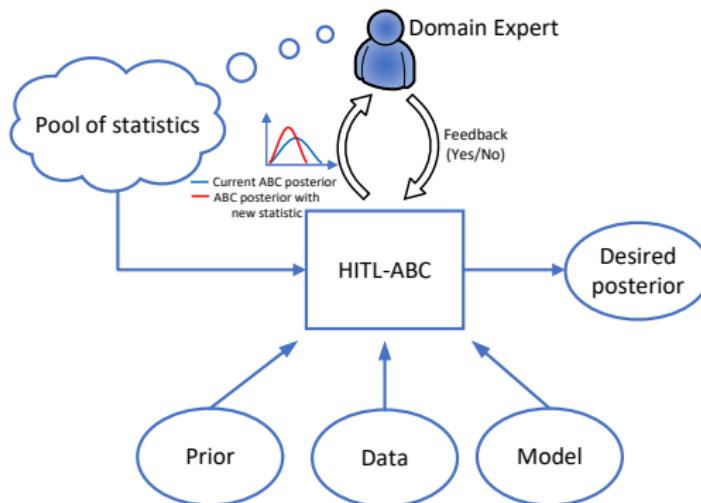
Solution: Likelihood-free inference methods such as ABC:

- permits sampling from the approximate posterior of a generative model
- widely used in fields such as population genetics, ecology, epidemiology, astrophysics, economics, and telecommunications
- relies on comparing distance between observed and simulated statistics

Fundamental unsolved problem in ABC

Choosing summary statistics!

- choice of statistics readily impacts the performance of ABC methods
- sufficient statistics are not available in most practical cases
- involves a non-trivial trade-off between
 - ▶ information loss due to summarization
 - ▶ curse of dimensionality
- choice depends on the model, application, and data at hand


Domain knowledge is vital for constructing statistics

In practice, domain experts manually handcraft and select statistics:

- laborious and time-consuming
- involves multiple trial-and-error steps
- takes up majority of the time of likelihood-free inference projects

Proposed Method: Human-in-the-loop (HITL) ABC

- We propose a human-in-the-loop ABC statistics selection method which considerably eases the work of domain experts
- By including the experts in the inference loop, we achieve better posterior characterization when
 - ▶ model evaluation is costly
 - ▶ model is misspecified
- Assumption: expert knowledge is tacit

To sum up...

- How to choose statistics is a fundamental unsolved problem in ABC.
- In practice, experts manually select and handcraft statistics based on domain knowledge, which is laborious.
- We propose an active statistics selection method that reduces the expert's effort.
- Find us at: Hall E. #705