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Multi-task learning (MTL)

e Solving several learning problems simultaneously.

e For example, in autonomous vehicles: object detection, depth estimation,
velocity estimation.

e The standard approach: -
asK-specitic
params,

o All tasks share an encoder (feature extractor).

o Each task has a task-specific head.
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Why MTL?

Compared to having several single-task (STL) models, MTL

e Reduces computation costs: By using a shared trunk we can reduce
computation at inference time.

e Improves generalization and data efficiency: Tasks regularize each other.



A common approach to MTL optimization

Most MTL optimization algorithms follow:

e Calculate per-task gradients ¢g;,1 =1, ..., K.
e Combine gradients into a joint direction A using aggregation alg. A.
e Update the parameters according to A = A(gy, ..., gx)-
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Our solution: A novel and principled MTL Algorithm, by viewing the gradient
aggregation step as a Bargaining game.



Background: Bargaining games

e K players, each with their own utility function uv; : AU{D} - R.

e A is set of agreement points and D the disagreement point.
e The players must find a point they agree upon or default to D.

Under mild conditions the game has a unique solution that satisfies (Nash, 1953):
e Pareto optimality.
e Symmetry.
e Independence of irrelevant alternatives.

e Invariance to affine transformation.

This unique solution is called the Nash bargaining solution.



Our approach: Nash-MTL

e Given an MTL problem with parameters 6.

e Search for update A6 in an €-ball around zero.

e Define the utility for task % as a directional derivative u;(A8) = Af' g;.
e Denote GG the matrix whose columns are the gradients g; .

Claim: The Nash bargaining solution for our problem is given by Ag = Z i 0;
s.t. GTGa = 1/a Where 1/« is taken element-wise. Z
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lllustrative example
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Analysis
We prove the sequence generated by our method converges to a Pareto optimal
(stationary) point in the (non-convex) convex case.
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Analysis

We prove the sequence generated by our method converges to a Pareto optimal
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Approximation and practical speedup

e The problem is solved at each iteration: optimization must be efficient.

e We cast non-convex problem as a sequence of convex optimization
problems.

e For additional speedup, we apply Nash-MTL once every N optimization steps.



Results — Multi-Task Regression on Graphs

QM9 dataset: Predict properties of molecules (11 tasks).
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LS 68 177.6+ 3.4
SI 4.0 778+ 9.2
RLW 82 203.84 3.4
DWA 6.4 1753+ 6.3
UW 53  108.0+£22.5
MGDA 59 12054+ 2.0
PCGrad 50 125.74+10.3
CAGrad 57 112.84+ 4.0
IMTL-G 4.7 772+ 9.3

| Nash-MTL 2.5 62.0+ 1.4 |




Results — Scene Understanding

NYUv2 dataset with 3 tasks: Semantic segmentation, depth and surface normal.

Segmentation Depth Surface Normal

Angle Distance | Within ¢° 1 MR| Am% /|
Mean Median 11.25 22.5 30

STL 38.30 63.76 0.6754  0.2780 25.01 19.21 30.14 57.20 69.15

LS 39.29 65.33 0.5493  0.2263 28.15 23.96 22.09 47.50 61.08 8.11 5.59
SI 38.45 64.27 0.5354 0.2201 27.60 23.37 22.53 48.57 62.32 7.11  4.39
RLW 37.17 63.77 0.5759  0.2410 28.27 24.18 2226 47.05 60.62 10.11  7.78
DWA 39.11 65.31 0.5510  0.2285 27.61 23.18 24.17 50.18 62.39  6.88 3.57
uw 36.87 63.17 0.5446  0.2260 27.04 22.61 23.54 49.05 63.65 6.44 4.05
MGDA  30.47 59.90 0.6070 0.2555 24.88 19.45 29.18 56.88 69.36 5.44 1.38
PCGrad  38.06 64.64 0.5550  0.2325 27.41 22.80 23.86 49.83 63.14  6.88 3.97
GradDrop 39.39 65.12 0.5455  0.2279 27.48 22.96 23.38 49.44 6287 6.44 3.58
CAGrad  39.79 65.49 0.5486  0.2250 26.31 21.58 25.61 52.36 65.58  3.77 0.20
IMTL-G  39.35 65.60 0.5426  0.2256 26.02 21.19 26.2 53.13 6624 311 —0.76

Nash-MTL 40.13 65.93 0.5261 0.2171 25.26  20.08 28.4 55.47  68.15 | 1.55 -—-4.04 I

mloU1 Pix Acct AbsErr| RelErr|




Results — Reinforcement Learning

MT10 from the Meta-world benchmark: 10 tasks.

Success += SEM
STL SAC 0.90 + 0.032 = & = = =
MTL SAC 0.49 £ 0.073
MTL SAC + TE 0.54 £ 0.047 button press door open drawer close drawer open peg insert
MH SAC 0.61 £ 0.036
SM 0.73 £ 0.043
CARE 0.84 £+ 0.051
PCGrad 0.72 £ 0.022 by
CAGrad 0.83 £ 0.045 pick place push reach window open window close

| Nash-MTL  0.91+0.031 |




Conclusion

e We presented Nash-MTL, a novel and principled approach for multitask
learning.

e We framed the gradient combination step in MTL as a bargaining game and
use the Nash bargaining solution to find the optimal update direction.

e \We provided extensive theoretical and empirical analysis.

e Our code is publicly available at: https://github.com/AvivNavon/nash-mitl



https://github.com/AvivNavon/nash-mtl

