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Multi-task learning (MTL)

● Solving several learning problems simultaneously.

● For example, in autonomous vehicles: object detection, depth estimation, 
velocity estimation.

● The standard approach:

○ All tasks share an encoder (feature extractor). 

○ Each task has a task-specific head.



Why MTL?

Compared to having several single-task (STL) models, MTL

● Reduces computation costs: By using a shared trunk we can reduce 
computation at inference time.

● Improves generalization and data efficiency: Tasks regularize each other.



Most MTL optimization algorithms follow:

● Calculate per-task gradients                        .
● Combine gradients into a joint direction     using aggregation alg.    .
● Update the parameters according to                            .
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The challenge: How to combine gradients and alleviate task interference?
● Gradients may conflict in directions or have large differences in magnitudes.
● Not clear how to combine the gradients

Our solution: A novel and principled MTL Algorithm, by viewing the gradient 
aggregation step as a Bargaining game.
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● players, each with their own utility function                               .
● is set of agreement points and      the disagreement point.
● The players must find a point they agree upon or default to    .

Under mild conditions the game has a unique solution that satisfies (Nash, 1953):
● Pareto optimality. 
● Symmetry. 
● Independence of irrelevant alternatives. 

● Invariance to affine transformation.

This unique solution is called the Nash bargaining solution.

Background: Bargaining games



● Given an MTL problem with parameters   .
● Search for update       in an   -ball around zero.
● Define the utility for task    as a directional derivative                             .       
● Denote     the matrix whose columns are the gradients     .

Claim: The Nash bargaining solution for our problem is given by                      
s.t. where         is taken element-wise.

Our approach: Nash-MTL
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Analysis
We prove the sequence generated by our method converges to a Pareto optimal 
(stationary) point in the (non-convex) convex case.
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Approximation and practical speedup
● The problem is solved at each iteration: optimization must be efficient. 
● We cast non-convex problem as a sequence of convex optimization 

problems. 
● For additional speedup, we apply Nash-MTL once every N optimization steps.

Nash-MTL



QM9 dataset: Predict properties of molecules (11 tasks).

Results – Multi-Task Regression on Graphs



NYUv2 dataset with 3 tasks: Semantic segmentation, depth and surface normal.

Results – Scene Understanding



MT10 from the Meta-world benchmark: 10 tasks.

Results – Reinforcement Learning



● We presented Nash-MTL, a novel and principled approach for multitask 
learning.

● We framed the gradient combination step in MTL as a bargaining game and 
use the Nash bargaining solution to find the optimal update direction.

● We provided extensive theoretical and empirical analysis.
● Our code is publicly available at: https://github.com/AvivNavon/nash-mtl

Conclusion

https://github.com/AvivNavon/nash-mtl

