
Multi-Task Learning
as a Bargaining Game

A. Navon1 A. Shamsian1 I. Achituve1 H. Maron2 K. Kawaguchi3

G. Chechik1,2 E. Fetaya1

1Bar-Ilan University 2NVIDIA Research 3National University of Singapore

Multi-task learning (MTL)

● Solving several learning problems simultaneously.

● For example, in autonomous vehicles: object detection, depth estimation,
velocity estimation.

● The standard approach:

○ All tasks share an encoder (feature extractor).

○ Each task has a task-specific head.

Why MTL?

Compared to having several single-task (STL) models, MTL

● Reduces computation costs: By using a shared trunk we can reduce
computation at inference time.

● Improves generalization and data efficiency: Tasks regularize each other.

Most MTL optimization algorithms follow:

● Calculate per-task gradients .
● Combine gradients into a joint direction using aggregation alg. .
● Update the parameters according to .

A common approach to MTL optimization

Most MTL optimization algorithms follow:

● Calculate per-task gradients .
● Combine gradients into a joint direction using aggregation alg. .
● Update the parameters according to .

The challenge: How to combine gradients and alleviate task interference?
● Gradients may conflict in directions or have large differences in magnitudes.
● Not clear how to combine the gradients.

A common approach to MTL optimization

Most MTL optimization algorithms follow:

● Calculate per-task gradients .
● Combine gradients into a joint direction using aggregation alg. .
● Update the parameters according to .

The challenge: How to combine gradients and alleviate task interference?
● Gradients may conflict in directions or have large differences in magnitudes.
● Not clear how to combine the gradients

Our solution: A novel and principled MTL Algorithm, by viewing the gradient
aggregation step as a Bargaining game.

A common approach to MTL optimization

● players, each with their own utility function .
● is set of agreement points and the disagreement point.
● The players must find a point they agree upon or default to .

Under mild conditions the game has a unique solution that satisfies (Nash, 1953):
● Pareto optimality.
● Symmetry.
● Independence of irrelevant alternatives.

● Invariance to affine transformation.

This unique solution is called the Nash bargaining solution.

Background: Bargaining games

● Given an MTL problem with parameters .
● Search for update in an -ball around zero.
● Define the utility for task as a directional derivative .
● Denote the matrix whose columns are the gradients .

Claim: The Nash bargaining solution for our problem is given by
s.t. where is taken element-wise.

Our approach: Nash-MTL

Illustrative example

Illustrative example

Analysis
We prove the sequence generated by our method converges to a Pareto optimal
(stationary) point in the (non-convex) convex case.

Nash-MTL

Analysis
We prove the sequence generated by our method converges to a Pareto optimal
(stationary) point in the (non-convex) convex case.

Approximation and practical speedup
● The problem is solved at each iteration: optimization must be efficient.
● We cast non-convex problem as a sequence of convex optimization

problems.
● For additional speedup, we apply Nash-MTL once every N optimization steps.

Nash-MTL

QM9 dataset: Predict properties of molecules (11 tasks).

Results – Multi-Task Regression on Graphs

NYUv2 dataset with 3 tasks: Semantic segmentation, depth and surface normal.

Results – Scene Understanding

MT10 from the Meta-world benchmark: 10 tasks.

Results – Reinforcement Learning

● We presented Nash-MTL, a novel and principled approach for multitask
learning.

● We framed the gradient combination step in MTL as a bargaining game and
use the Nash bargaining solution to find the optimal update direction.

● We provided extensive theoretical and empirical analysis.
● Our code is publicly available at: https://github.com/AvivNavon/nash-mtl

Conclusion

https://github.com/AvivNavon/nash-mtl

