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Treatment effects over time

• Aim? Estimate counterfactual outcomes for an individual given their history under 

a future sequence of treatments
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Treatment effects over time

• Existing work - Limited to fixed, regular time intervals between observations

Observations are typically NOT at regular intervals
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Treatment effects over time

• Irregular sampling: Both patient history and future treatment plans
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Treatment effects over time

• Irregular sampling: Both patient history and future treatment plans

How can we 

learn from such 

observation 

patterns?
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Proposed Method: TE-CDE

• Solution: Treatment Effect Neural Controlled Differential Equation (TE-CDE)

• Key idea: Learn a continuous latent representation of the patient state as the solution to a CDE

• Time-dependent confounding: Address via domain adversarial training (Ganin et al., 2016)
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Simulation Environment: Cancer Tumor Growth

Not possible to observe counterfactuals, thus we require a simulation environment.

• Flexible observation process parametrized by a Hawkes process (Hawkes, 1971):

Self-excitingState-dependent

(based on AJCC 

cancer stages)

• Lung cancer tumor growth model (Geng et al., 2017):



Experiment Results

• Outperform state-of-the-art discrete-time baselines CRN (Bica et al., ICLR 2020) and 

RMSN (Lim et al., NeurIPS 2018)

• Demonstrate importance of domain adversarial training 𝜇 = 0

• Utility for both counterfactual estimation and treatment accuracy

Counterfactual estimation Treatment accuracy



Contributions

• Extend counterfactual estimation over time to the irregularly sampled setting

• Introduce a simulation environment for irregularly sampled observations

• Propose TE-CDE as a solution, modeling for the first time a patient’s (latent) trajectory 

as the solution to a CDE

• Demonstrate utility of our approach for both counterfactual estimation and treatment 

accuracy
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