Continuous-Time Modeling of Counterfactual Outcomes
Using Neural Controlled Differential Equations

ICML 2022

N. Seedat™, F. Imrie*, A. Bellot, Z. Qian, M. van der Schaar

q& van_der_Schaar B UNIVERSITY OF ns74l1@cam.ac.uk
S¥ \LAB UCLA % ciMBRIDGE

Imrie@ucla.edu

vanderschaar-lab.com



Treatment effects over time

« Aim? Estimate counterfactual outcomes for an individual given their history under
a future sequence of treatments
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Treatment effects over time

« Aim? Estimate counterfactual outcomes for an individual given their history under
a future sequence of treatments
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Treatment effects over time

« Aim? Estimate counterfactual outcomes for an individual given their history under
a future sequence of treatments

A I
W : O
3 ° |
© |
> ' ‘ . O
@ O :
c Q O
S : o ©
]
S5 : O
O I
I I l | l | l I | R
| I I | | | | | | "
t—58 t—46 t—8 t t+4 t+36 Time
O Treatments -- Counterfactual paths
van_der Schaar e Observed outcomes o Counterfactual outcomes 5 UNIVERSITY OF
!j‘g ?;‘- \LAB U C LA 4P CAMBRIDGE



Treatment effects over time

« Aim? Estimate counterfactual outcomes for an individual given their history under

a future sequence of treatments
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Treatment effects over time

« Aim? Estimate counterfactual outcomes for an individual given their history under
a future sequence of treatments
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Treatment effects over time

« Aim? Estimate counterfactual outcomes for an individual given their history under
a future sequence of treatments
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Treatment effects over time

« Existing work - Limited to fixed, regular time intervals between observations
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Treatment effects over time

* Irregular sampling: Both patient history and future treatment plans
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Treatment effects over time

* Irregular sampling: Both patient history and future treatment plans

—
- il ISS———

I
(b} : “
- I //
© ® I R - How can we
s
> o O O : X ot learn from such
= Q- A-- [F° observation
S NN A Rt patterns?
]
S
@

| | i | | | .
| | | | | | "
te tos t, t_g t > Time

But instead observed IRREGULARLY
der_Sch
aj.j?.? ;li;l\_Ber_ chaar UCLA

B UNIVERSITY OF

oy [y

Q4P CAMBRIDGE




Proposed Method: TE-CDE

« Solution: Treatment Effect Neural Controlled Differential Equation (TE-CDE)
« Key idea: Learn a continuous latent representation of the patient state as the solution to a CDE
« Time-dependent confounding: Address via domain adversarial training (Ganin et al., 2016)
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Simulation Environment: Cancer Tumor Growth

Not possible to observe counterfactuals, thus we require a simulation environment.

BT UNIVERSITY OF

Gj‘g E{- \ E;‘ﬂ;‘ er_Schaar UCLA & S MERIDGE



Simulation Environment: Cancer Tumor Growth

Not possible to observe counterfactuals, thus we require a simulation environment.

« Lung cancer tumor growth model (Geng et al., 2017):
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Simulation Environment: Cancer Tumor Growth

Not possible to observe counterfactuals, thus we require a simulation environment.

« Lung cancer tumor growth model (Geng et al., 2017):

dv (1)
dt
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« Flexible observation process parametrized by a Hawkes process (Hawkes, 1971):.
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Simulation Environment: Cancer Tumor Growth

Not possible to observe counterfactuals, thus we require a simulation environment.
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Simulation Environment: Cancer Tumor Growth

Not possible to observe counterfactuals, thus we require a simulation environment.

« Lung cancer tumor growth model (Geng et al., 2017):
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Experiment Results

« Outperform state-of-the-art discrete-time baselines CRN (Bica et al., ICLR 2020) and

RMSN (Lim et al., NeurlPS 2018)

« Demonstrate importance of domain adversarial training (u = 0)
 Utility for both counterfactual estimation and treatment accuracy
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Contributions

« Extend counterfactual estimation over time to the irregularly sampled setting
« Introduce a simulation environment for irregularly sampled observations

 Propose TE-CDE as a solution, modeling for the first time a patient’s (latent) trajectory
as the solution to a CDE

« Demonstrate utility of our approach for both counterfactual estimation and treatment
accuracy
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