

Continuous-Time Modeling of Counterfactual Outcomes Using Neural Controlled Differential Equations

ICML 2022

N. Seedat*, F. Imrie*, A. Bellot, Z. Qian, M. van der Schaar

van_der_Schaar
\ LAB

vanderschaar-lab.com

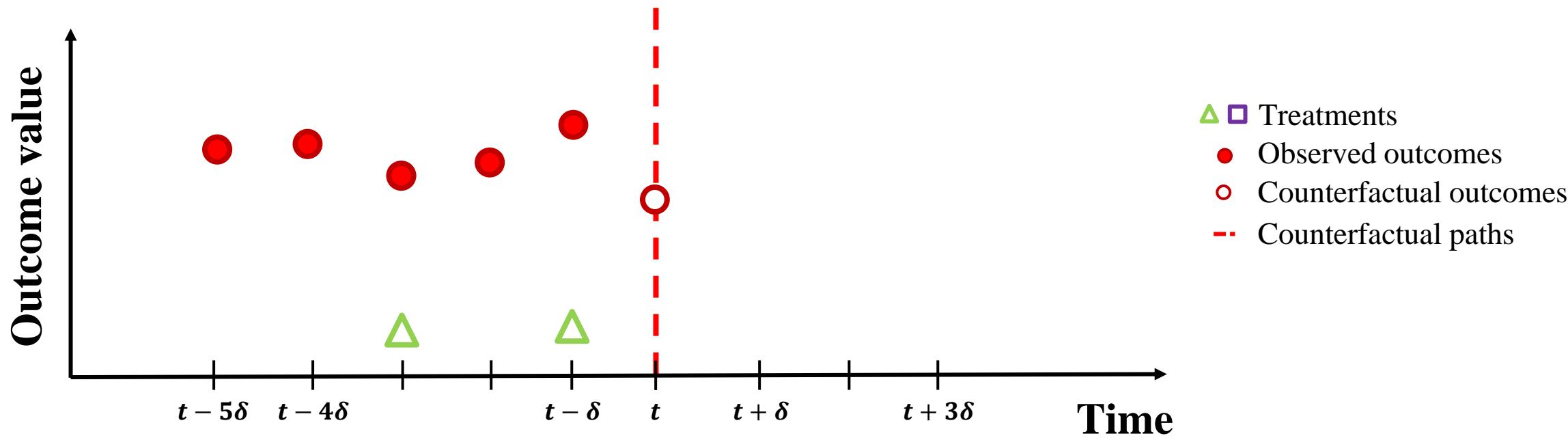
UCLA

UNIVERSITY OF
CAMBRIDGE

ns741@cam.ac.uk
imrie@ucla.edu

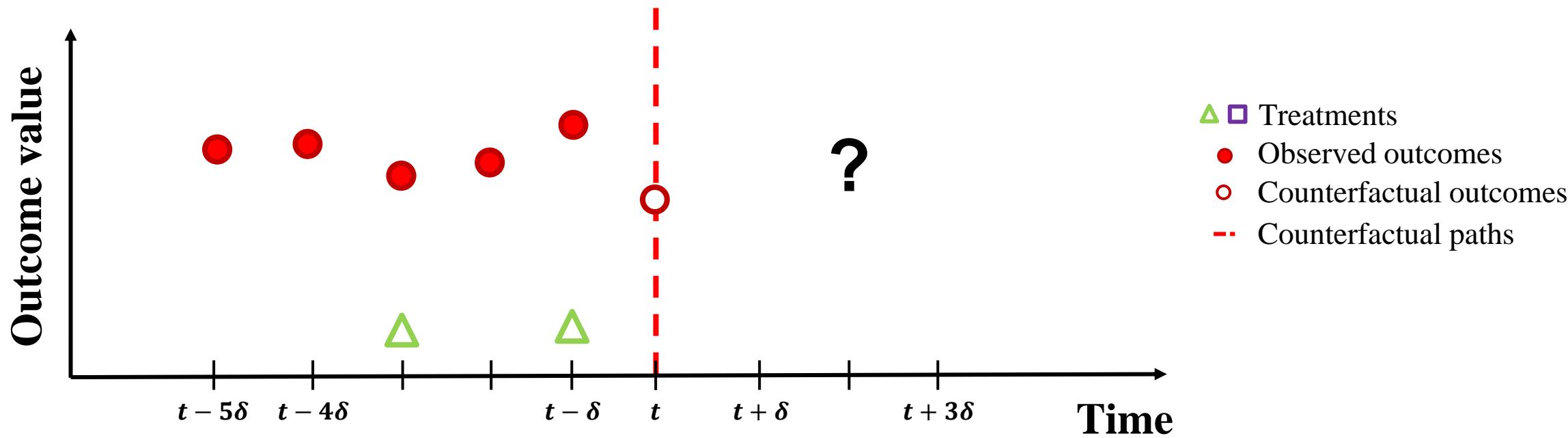
Treatment effects over time

- Aim? Estimate **counterfactual outcomes** for an individual given their history under a future sequence of treatments



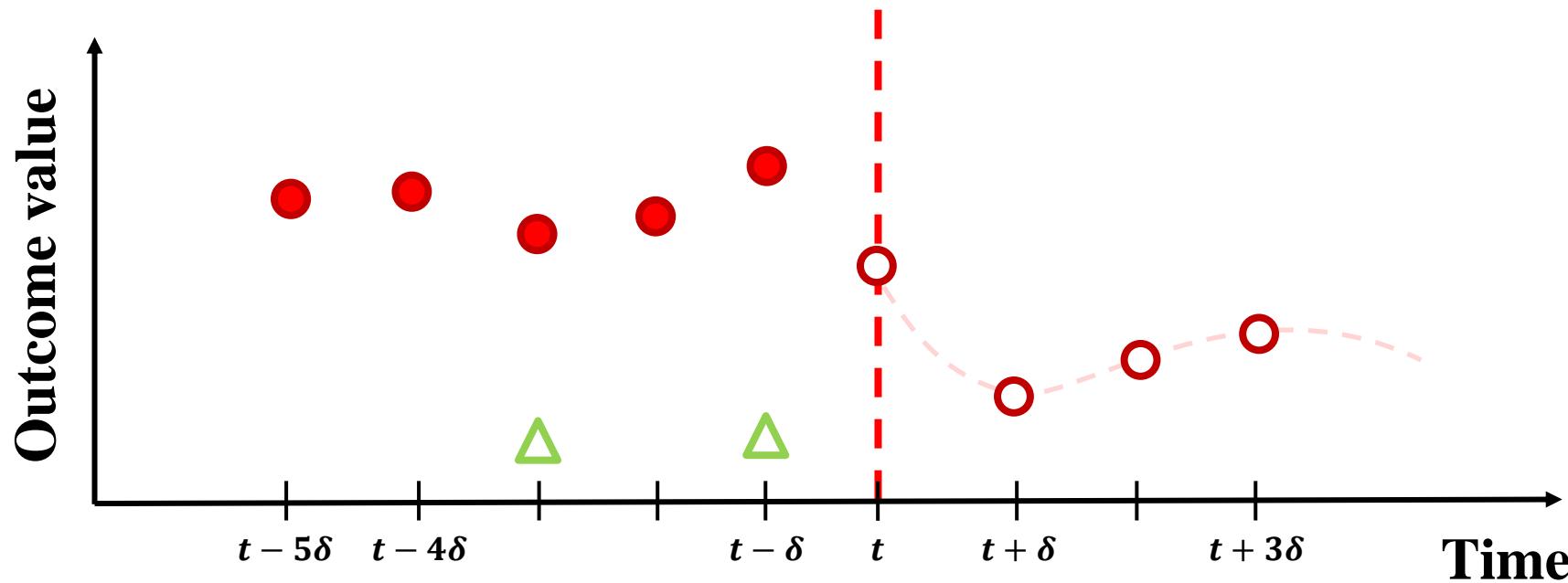
Treatment effects over time

- Aim? Estimate **counterfactual outcomes** for an individual given their history under a future sequence of treatments



Treatment effects over time

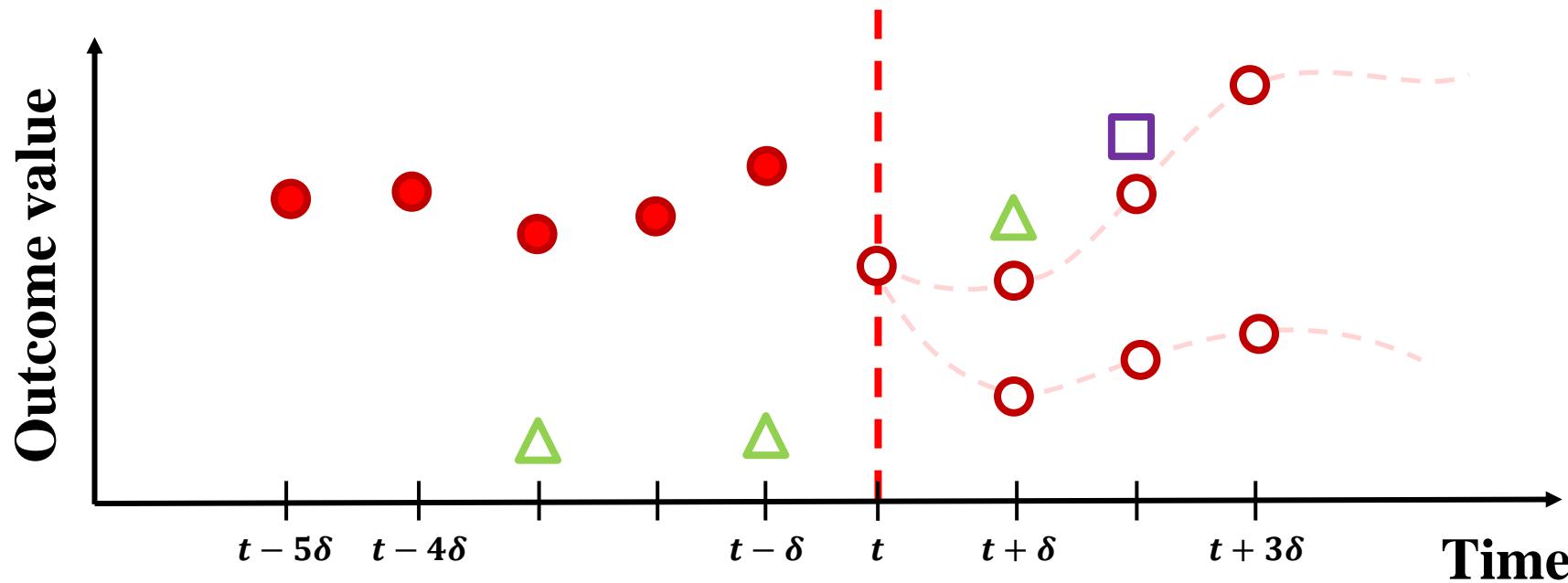
- Aim? Estimate **counterfactual outcomes** for an individual given their history under a future sequence of treatments



- ▲ □ Treatments
- Observed outcomes
- Counterfactual paths
- Counterfactual outcomes

Treatment effects over time

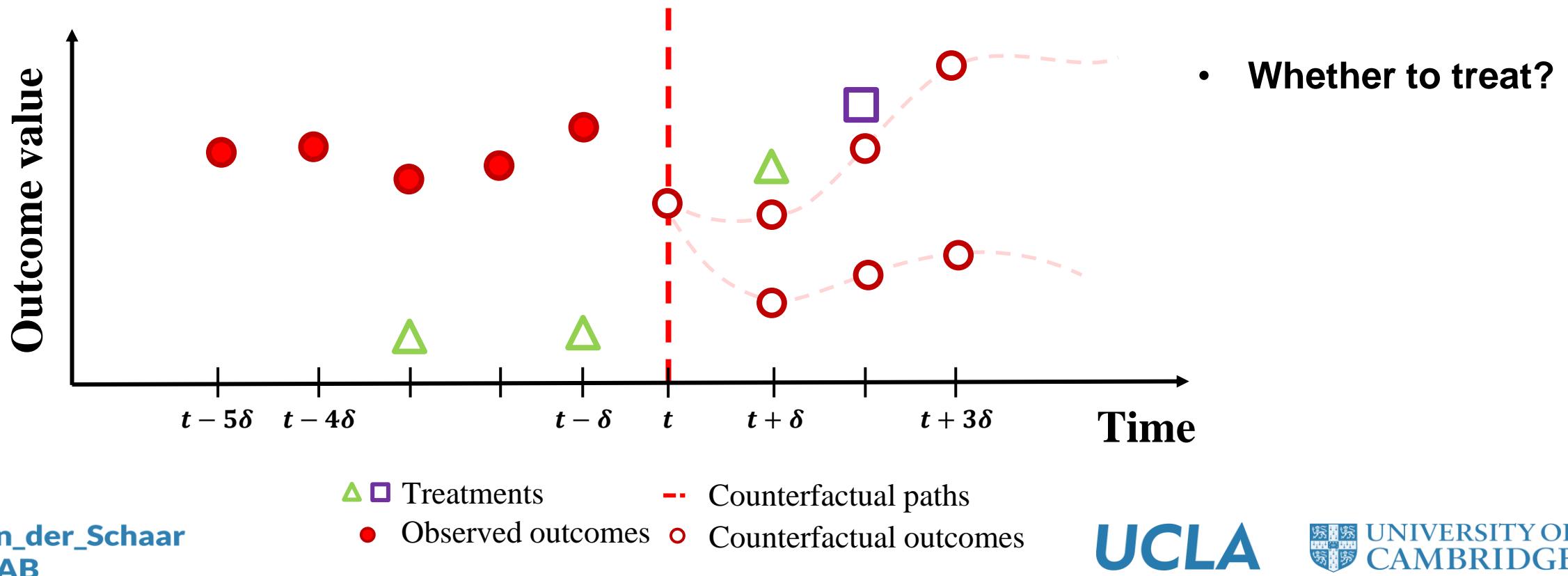
- Aim? Estimate **counterfactual outcomes** for an individual given their history under a future sequence of treatments



- ▲ □ Treatments
- ● Observed outcomes
- Counterfactual paths
- Counterfactual outcomes

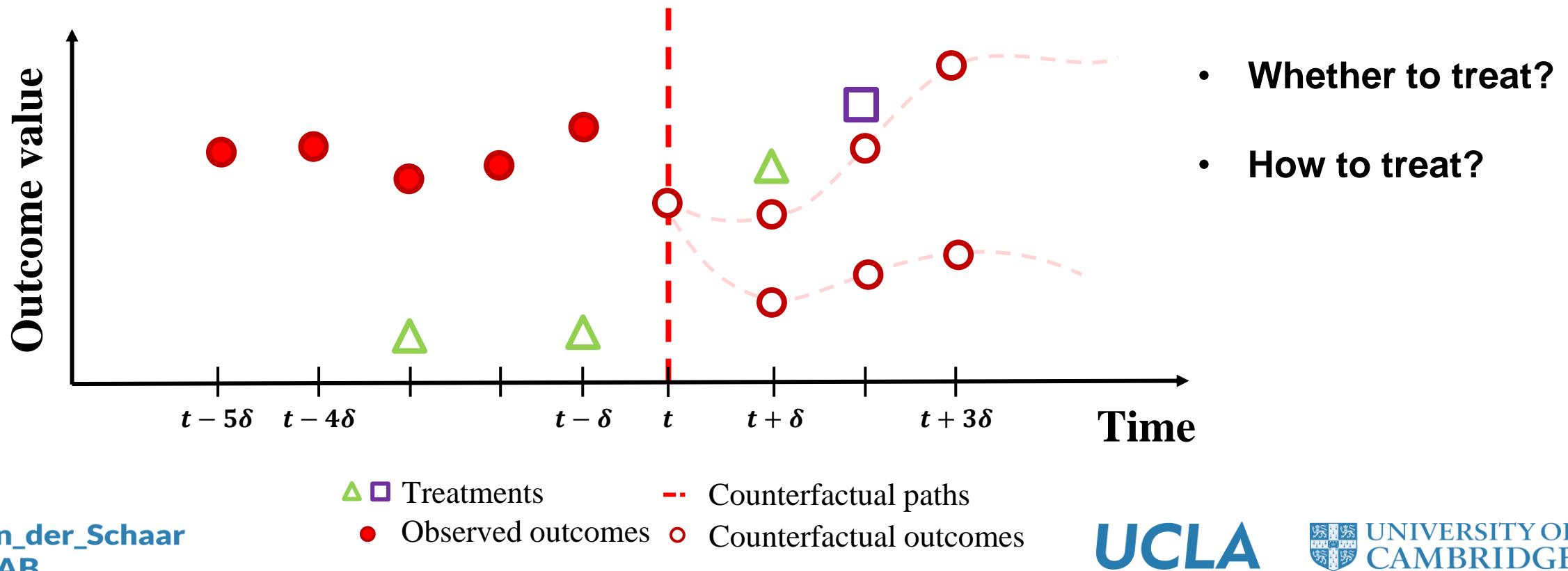
Treatment effects over time

- Aim? Estimate **counterfactual outcomes** for an individual given their history under a future sequence of treatments



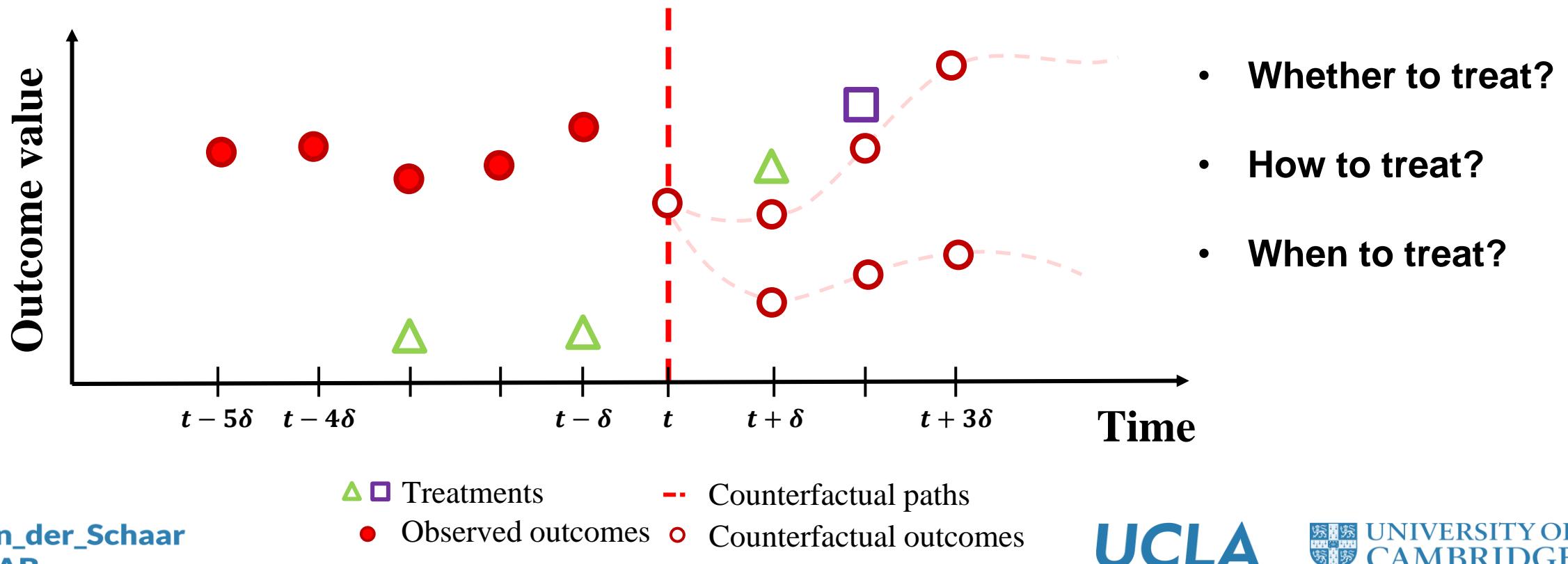
Treatment effects over time

- Aim? Estimate **counterfactual outcomes** for an individual given their history under a future sequence of treatments



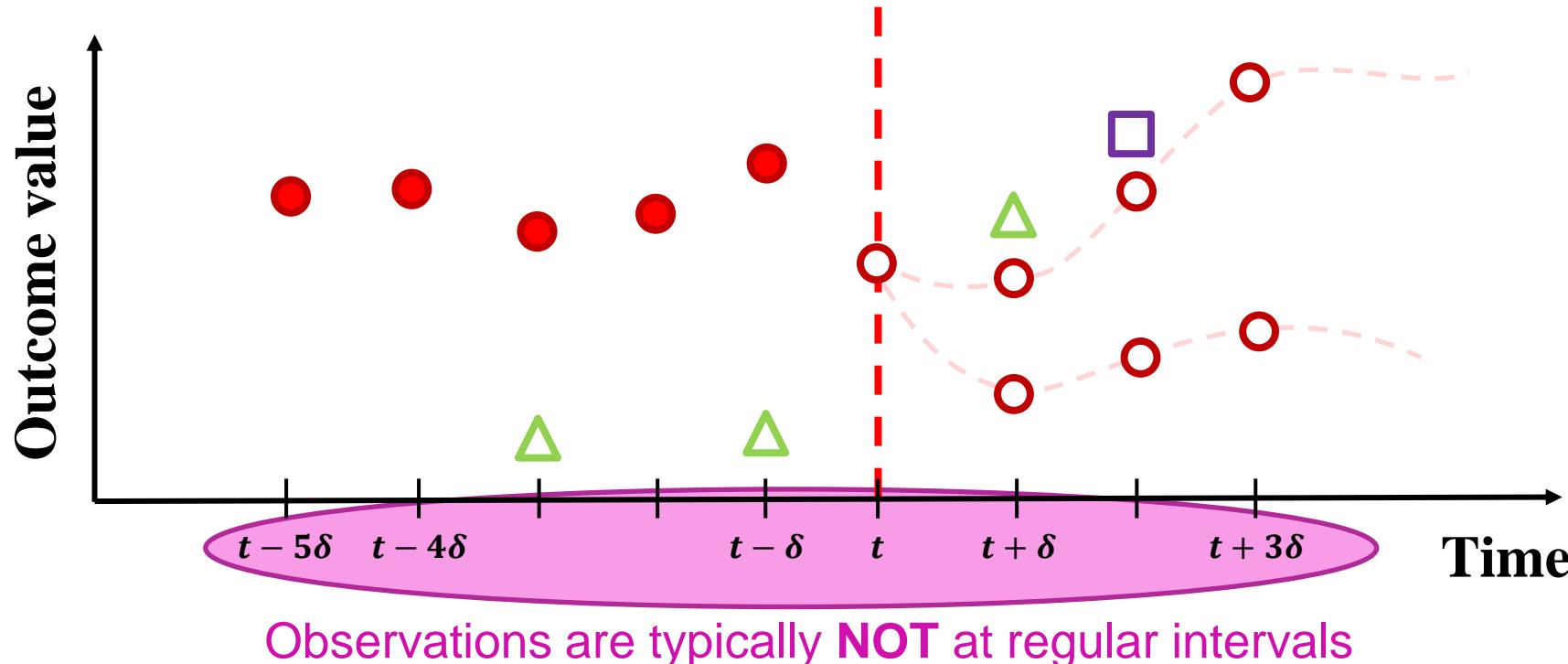
Treatment effects over time

- Aim? Estimate **counterfactual outcomes** for an individual given their history under a future sequence of treatments



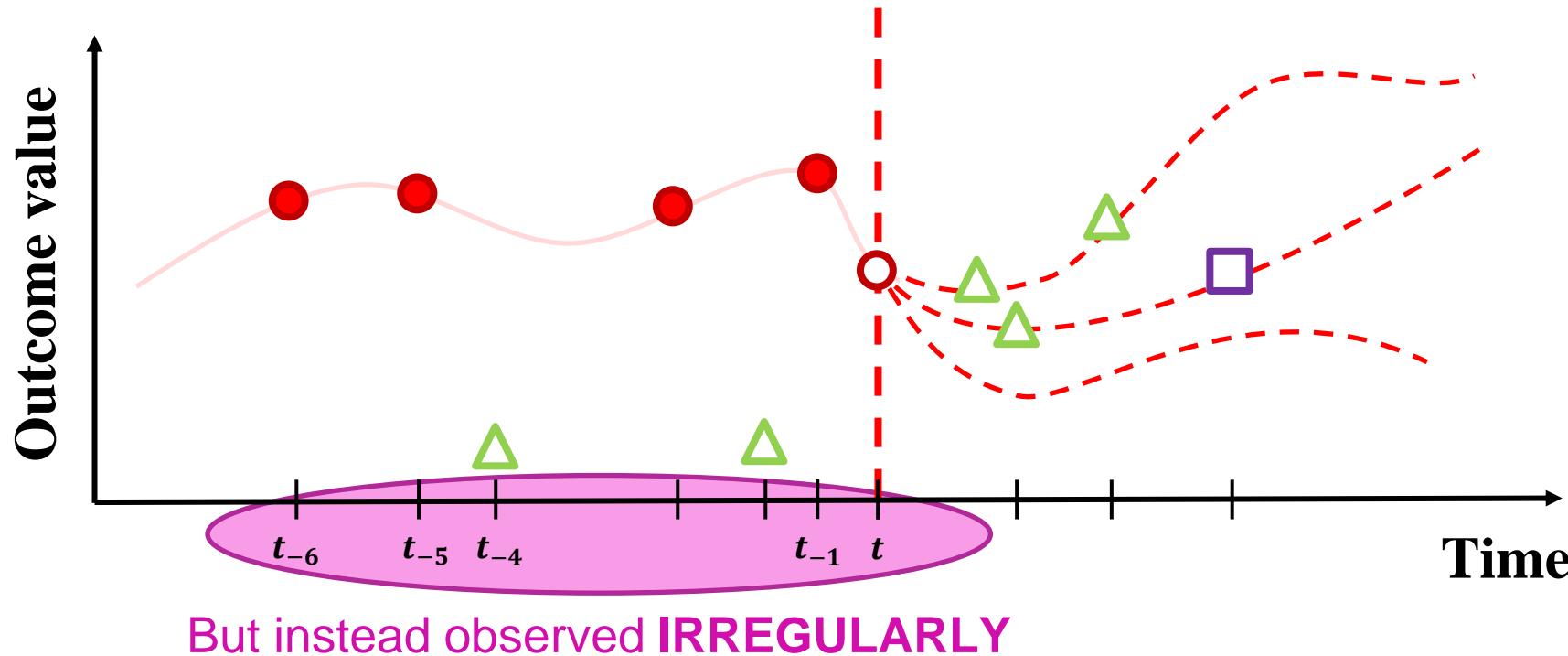
Treatment effects over time

- Existing work - Limited to **fixed, regular** time intervals between observations



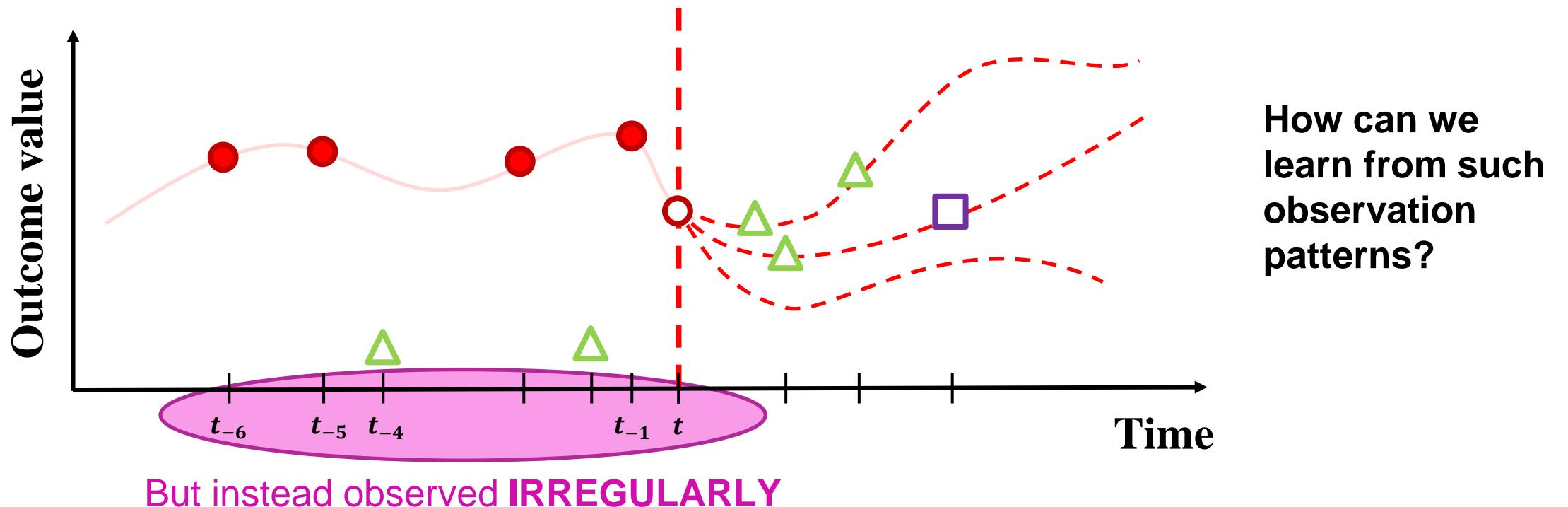
Treatment effects over time

- **Irregular sampling:** Both patient history and future treatment plans



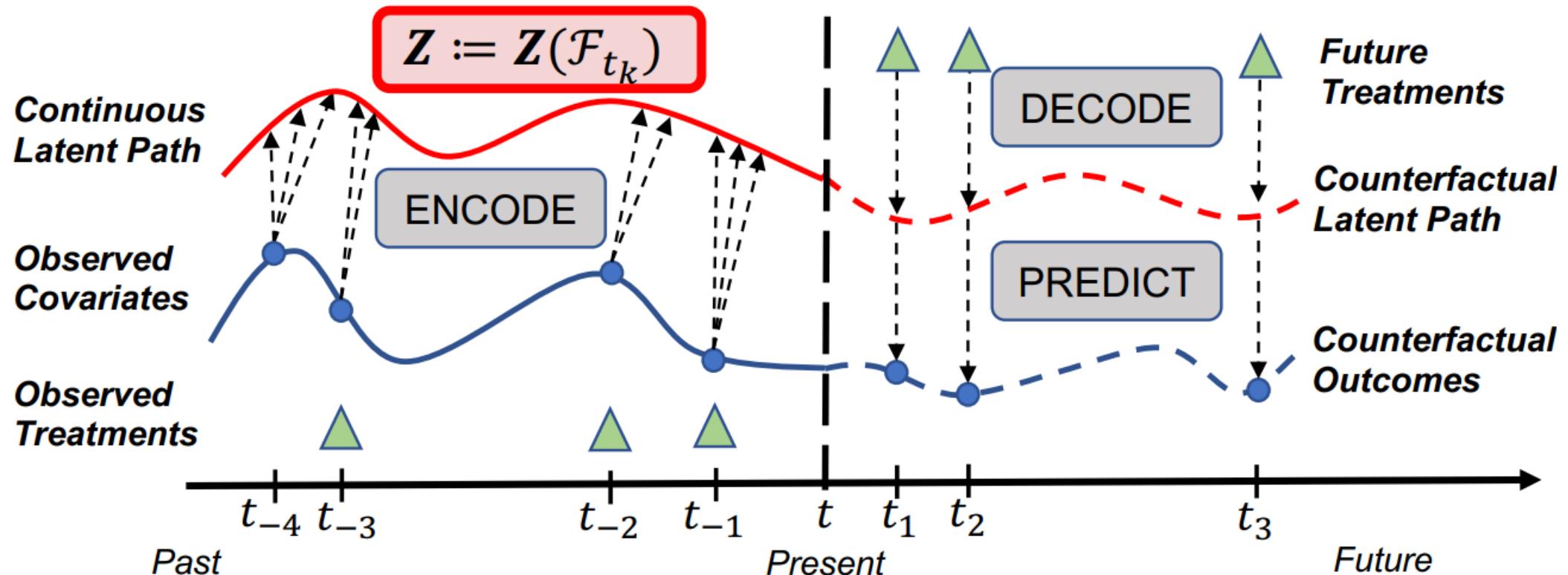
Treatment effects over time

- **Irregular sampling:** Both patient history and future treatment plans



Proposed Method: TE-CDE

- **Solution:** Treatment Effect Neural Controlled Differential Equation (TE-CDE)
- **Key idea:** Learn a *continuous latent representation* of the patient state as the solution to a CDE
- **Time-dependent confounding:** Address via domain adversarial training (Ganin et al., 2016)



Simulation Environment: Cancer Tumor Growth

Not possible to observe counterfactuals, thus we require a simulation environment.

Simulation Environment: Cancer Tumor Growth

Not possible to observe counterfactuals, thus we require a simulation environment.

- Lung cancer tumor growth model (Geng et al., 2017):

$$\frac{dV(t)}{dt} = \underbrace{\left(\rho \log \left(\frac{K}{V(t)} \right) \right)}_{\text{Tumor growth}} - \underbrace{\beta_c C(t)}_{\text{Chemotherapy}} - \underbrace{\left(\alpha_r c(t) + \beta_r c(t)^2 \right)}_{\text{Radiotherapy}} + \underbrace{e_t}_{\text{Noise}} V(t)$$

Simulation Environment: Cancer Tumor Growth

Not possible to observe counterfactuals, thus we require a simulation environment.

- Lung cancer tumor growth model (Geng et al., 2017):

$$\frac{dV(t)}{dt} = \underbrace{\left(\rho \log \left(\frac{K}{V(t)} \right) \right)}_{\text{Tumor growth}} - \underbrace{\beta_c C(t)}_{\text{Chemotherapy}} - \underbrace{\left(\alpha_r c(t) + \beta_r c(t)^2 \right)}_{\text{Radiotherapy}} + \underbrace{e_t}_{\text{Noise}} V(t)$$

- Flexible observation process parametrized by a Hawkes process (Hawkes, 1971):

$$\lambda(t, s_t = i) = \lambda_i^o + \sum_{\tau < t_m < t} e^{-2(t-t_m)},$$

Simulation Environment: Cancer Tumor Growth

Not possible to observe counterfactuals, thus we require a simulation environment.

- Lung cancer tumor growth model (Geng et al., 2017):

$$\frac{dV(t)}{dt} = \underbrace{\left(\rho \log \left(\frac{K}{V(t)} \right) \right)}_{\text{Tumor growth}} - \underbrace{\beta_c C(t)}_{\text{Chemotherapy}} - \underbrace{\left(\alpha_r c(t) + \beta_r c(t)^2 \right)}_{\text{Radiotherapy}} + \underbrace{e_t}_{\text{Noise}} V(t)$$

- Flexible observation process parametrized by a Hawkes process (Hawkes, 1971):

$$\lambda(t, s_t = i) = \lambda_i^o + \underbrace{\sum_{\tau < t_m < t} e^{-2(t-t_m)}}_{\text{Self-exciting}},$$

Simulation Environment: Cancer Tumor Growth

Not possible to observe counterfactuals, thus we require a simulation environment.

- Lung cancer tumor growth model (Geng et al., 2017):

$$\frac{dV(t)}{dt} = \underbrace{\left(\rho \log \left(\frac{K}{V(t)} \right) \right)}_{\text{Tumor growth}} - \underbrace{\beta_c C(t)}_{\text{Chemotherapy}} - \underbrace{\left(\alpha_r c(t) + \beta_r c(t)^2 \right)}_{\text{Radiotherapy}} + \underbrace{e_t}_{\text{Noise}} V(t)$$

- Flexible observation process parametrized by a Hawkes process (Hawkes, 1971):

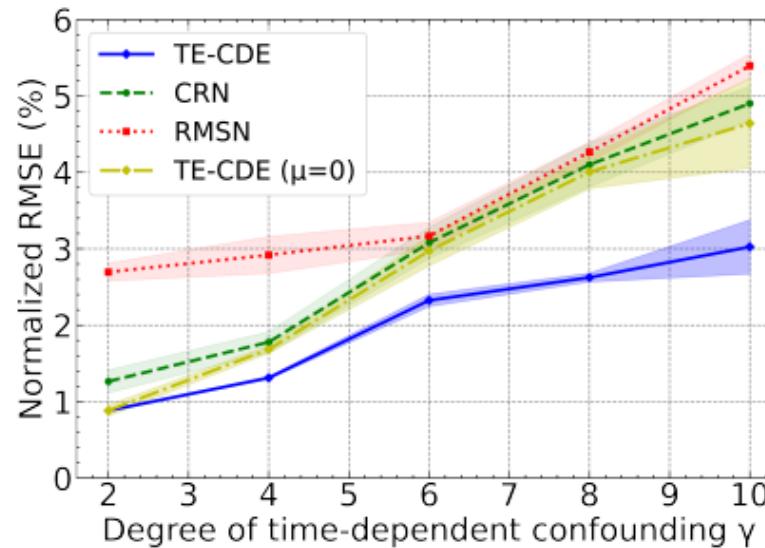
$$\lambda(t, s_t = i) = \lambda_i^o + \sum_{\tau < t_m < t} e^{-2(t-t_m)},$$

State-dependent
(based on AJCC
cancer stages)

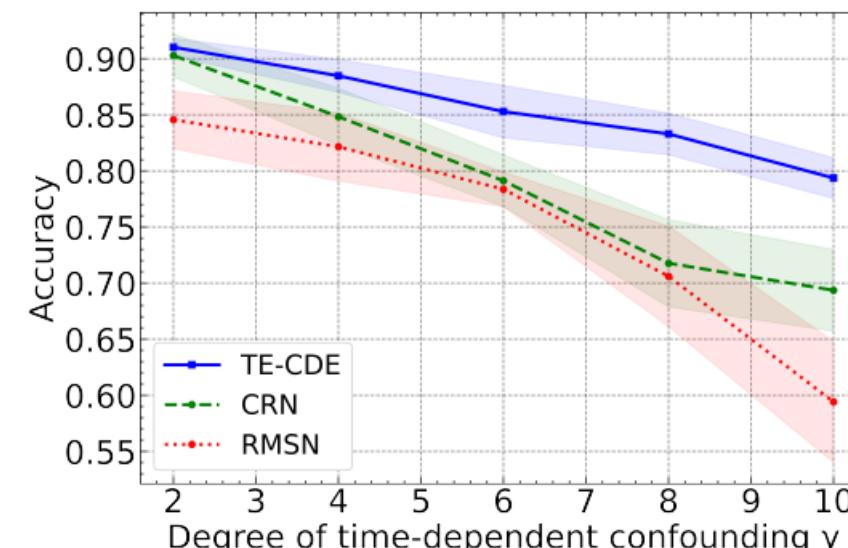
Self-exciting

Experiment Results

- Outperform state-of-the-art **discrete-time** baselines CRN (Bica et al., ICLR 2020) and RMSN (Lim et al., NeurIPS 2018)
- Demonstrate importance of **domain adversarial training** ($\mu = 0$)
- Utility for both **counterfactual estimation** and **treatment accuracy**



Counterfactual estimation



Treatment accuracy

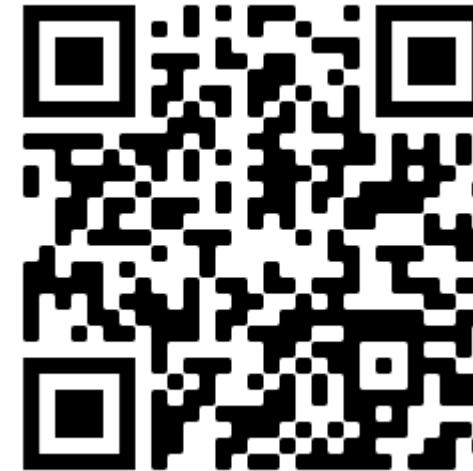
Contributions

- Extend counterfactual estimation over time to the **irregularly sampled setting**
- Introduce a **simulation environment** for irregularly sampled observations
- **Propose TE-CDE** as a solution, modeling for the first time a patient's (latent) trajectory as the solution to a CDE
- Demonstrate utility of our approach for both **counterfactual estimation** and **treatment accuracy**

Resources & Acknowledgements

Paper

Code



Cystic
Fibrosis Trust

van_der_Schaar
LAB

UCLA

UNIVERSITY OF
CAMBRIDGE