Model-Free Opponent Shaping

Chris Lu, Timon Willi, Christian Schroeder de Witt, Jakob Foerster

General-Sum Games

Iterated Matrix Games: IPD

Table 1. Payoff Matrix for the Prisoner's Dilemma

	C	D	
C	(-1, -1)	(-3, 0)	
D	(0, -3)	(-2, -2)	

Iterated Prisoner's Dilemma:

- We consider the iterated game
- Game states are the outcome of the previous round
 - o P0, CC, CD, DC, DD

Iterated Matrix Games: IPD

Naive Update

$$\theta_{T}^{i} \sim f_{RL}(\theta_{t-1}^{i}, \theta_{t-1}^{-i})$$

$$f_{RL}(\theta_{t-1}^{i}, \theta_{t-1}^{-i}) = \theta_{t-1}^{i} + \alpha \nabla_{\theta} V^{i}(\theta_{t-1}^{i}, \theta_{t-1}^{-i})$$

Naive Learning Results

LOLA Update

$$\theta_{T}^{i} \sim f_{LOLA}(\theta_{t-1}^{i}, \theta_{t-1}^{-i})$$

$$f_{LOLA}(\theta_{t-1}^{i}, \theta_{t-1}^{-i}) = \theta_{t-1}^{i} + \alpha \nabla_{\theta} V^{i}(\theta_{t-1}^{i}, f_{RL}(\theta_{t-1}^{-i}, \theta_{t-1}^{i}))$$

LOLA Results: IPD

Issues with LOLA

- 1. Myopic: Only shapes the opponent's next step
- 2. Inconsistent: Explicitly assumes the opponent is a naive learner
- 3. Unstable: Uses higher-order derivatives, which can be difficult to estimate

Results in IPD

	M-FOS	NL	LOLA	M-MAML
M-FOS	-1.01	-0.51	-0.73	-0.67
NL	-2.14	-1.98	-1.52	-1.28
LOLA	-2.09	-1.30	-1.09	-1.04
M-MAML	-1.86	-1.25	-1.15	-1.17

Results in IPD

M-FOS Self-Play

Results in IMP

	M-FOS	NL	LOLA	M-MAML
M-FOS	0.0	0.20	0.19	0.22
NL	-0.20	0.0	-0.02	-0.01
LOLA	-0.19	0.02	0.0	0.02
M-MAML	-0.22	0.01	-0.02	0.0

Inputting and outputting entire policies doesn't scale!

- Inputting and outputting entire policies doesn't scale!
- Solution:
 - The Meta-Agent takes as input trajectories, and outputs a conditioning vector

- Inputting and outputting entire policies doesn't scale!
- Solution:
 - The Meta-Agent takes as input trajectories, and outputs a conditioning vector
 - The inner agent then uses this conditioning vector to influence its policy within the episode

- Inputting and outputting entire policies doesn't scale!
- Solution:
 - The Meta-Agent takes as input trajectories, and outputs a conditioning vector
 - The inner agent then uses this conditioning vector to influence its policy within the episode
 - This is related to Hierarchical Reinforcement Learning

- Two players: Red and Blue
- 3x3 Grid
- Coin has color, randomly placed on grid
- Picking up coin -> +1 reward
- IF coin opposite color, then -2 reward for opponent
- Greedy policy: Expected Reward of 0
- MFOS positively influences PPO

	M-FOS	PPO
M-FOS	20.56	44.26
PPO	-24.62	4.25

Future Work

- Can M-FOS learn to influence other learning agents over a cheap talk channel, without impacting the underlying environment dynamics?
- Can M-FOS learn to generalize against different opponents and different environments?

Thanks for Listening!