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General-Sum Games



Iterated Matrix Games: IPD

Iterated Prisoner’s Dilemma:
● We consider the iterated game
● Game states are the outcome of the 

previous round
○ P0, CC, CD, DC, DD
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Naive Update
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Naive Learning Results
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LOLA Update
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LOLA Results: IPD



Issues with LOLA

1. Myopic: Only shapes the opponent’s next step
2. Inconsistent: Explicitly assumes the opponent is a naive learner
3. Unstable: Uses higher-order derivatives, which can be difficult to estimate
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Results in IPD
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M-FOS Self-Play



Results in IMP
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Scaling up M-FOS

● Inputting and outputting entire policies doesn’t scale!
● Solution:

● The Meta-Agent takes as input trajectories, and outputs a conditioning 
vector

● The inner agent then uses this conditioning vector to influence its policy 
within the episode

● This is related to Hierarchical Reinforcement Learning



Scaling up M-FOS

● Two players: Red and Blue
● 3x3 Grid
● Coin has color, randomly placed on grid
● Picking up coin -> +1 reward
● IF coin opposite color, then -2 reward for opponent
● Greedy policy: Expected Reward of 0
● MFOS positively influences PPO



Future Work

● Can M-FOS learn to influence other learning agents over a cheap talk 
channel, without impacting the underlying environment dynamics?

● Can M-FOS learn to generalize against different opponents and different 
environments?



Thanks for Listening!


