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Motivation

• The Multivariate Community Hawkes (MULCH):
• Flexible model for continuous-time networks that introduces dependence 

between node pairs in a controlled manner.

• Continuous-time networks:
• Events between node pairs 𝑖, 𝑗 at time 𝑡𝑖𝑗

• Ex: messages between users on social media.
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• Continuous-time networks:
• Events between node pairs 𝑖, 𝑗 at time 𝑡𝑖𝑗

• Ex: messages between users on social media.

• Goal: Analyze interactions between nodes and simulate realistic networks.



Background: Multivariate Hawkes Process

• Multivariate Hawkes Process :
• Temporal point process generates a sequence of timestamps {𝑡1, 𝑡2, … ,}.

• Self and Mutually-exciting temporal processes.

• Event in one process excites future events in self and other processes.
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• Temporal point process generates a sequence of timestamps {𝑡1, 𝑡2, … ,}.

• Self and Mutually-exciting temporal processes.

• Event in one process excites future events in self and other processes.

• Network Setup
• node pairs 𝑖, 𝑗 = processes

• An Event between 𝑖, 𝑗 (dashed) →future events in both 𝑖, 𝑗 and 𝑗, 𝑖 (solid).



Background: Multivariate Hawkes Process

• Intensity function: instantaneous rate of events at time t

• Intensity of a node pair (𝑖, 𝑗) – exponential kernel:

𝜆𝑖𝑗 𝑡 = 𝜇𝑖𝑗 + ෍

(𝑥,𝑦)

𝛼𝑥𝑦→𝑖𝑗 ෍

𝑠: 𝑡𝑠
𝑥𝑦

<𝑡

𝛽𝑒𝛽 𝑡−𝑡𝑠
𝑥𝑦

𝜇ij : baseline intensity

𝛼𝑥𝑦→𝑖𝑗: excitation from (𝑥, 𝑦) to (𝑖, 𝑗)

𝛽 : exponential decay rate



Problem!

𝜆𝑖𝑗 𝑡 = 𝜇𝑖𝑗 + ෍

(𝑥,𝑦)

𝜶𝒙𝒚→𝒊𝒋 ෍

𝑠: 𝑡𝑠
𝑥𝑦

<𝑡

𝛽𝑒𝛽 𝑡−𝑡𝑠
𝑥𝑦

• For a directed network with 𝑛 nodes:
• Number node pairs = 𝑛 𝑛 − 1 ≈ 𝑛2

• Excitation matrix 𝜶 ≈ 𝑛2 × 𝑛2

• Intractable even for 𝑛 = 100 nodes!

Excitation matrix



MULCH Assumptions

1. Adapted from Stochastic Block Model (SBM), assume K 
blocks/communities:
• Each node 𝑖 ∈ block 𝑎

• Each node pair (𝑖, 𝑗) ∈ block pair 𝑎, b
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• Each node pair (𝑖, 𝑗) ∈ block pair 𝑎, b

2. A node pair (𝑖, 𝑗) ∈ block pair (𝑎, b) can only be excited by node pairs in 
block pair (𝑎, b) & block pair b, a



MULCH Assumptions

3. Inspired by research in social 
sciences, we model 6 types of 
excitation:

• Example:
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• Message between (1,8)
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MULCH Assumptions

3. Inspired by research in social 
sciences, we model 6 types of 
excitation:

• Example:
• Nodes 1-5 in block a

• Nodes 6-8 in block b

• Message between (1,8)
➢1 to 8 (self)

➢8 to 1 (Reciprocal)

➢1 to 6 and 7 (Turn continuation)

➢Other three (Generalized reciprocity, Allied 
continuation, Allied reciprocity)



What have we gained?

• Estimation: spectral clustering with a likelihood refinement procedure

1. Community/block detection.

2. Excitation matrix has a diagonal 
structure (sparser).

3. Meaningful estimated parameters.



Results: Predictive Accuracy

• Split dataset into 0.8 train : 0.2 test

• Predictive log-likelihood ℒ score:

test ℒ=
(full ℒ − train ℒ)

number of test events

Model Reality Enron MID Facebook

MULCH -3.82 -5.13 -3.53 -6.82

BHM -5.37 -7.49 -5.33 -14.4

CHIP -4.83 -5.61 -3.67 -9.46

REM -6.11 -6.84

ADM4 -8.52

DLS -5.65 -7.57 -4.52



Results: Generative Accuracy

• Compare counts of temporal motifs on Reality Mining

Photo credit: Paranjape, A., Benson, A. R., and Leskovec, J. Motifs in temporal 
networks. In Proceedings of the 10th ACM International Conference on Web 
Search and Data Mining, pp. 601–610, 2017.



Case Study: Militarized Interstate Disputes dataset



Thank you! 

• Code: https://github.com/IdeasLabUT/Multivariate-Community-Hawkes

https://github.com/IdeasLabUT/Multivariate-Community-Hawkes

