The Multivariate Community Hawkes Model for Dependent Relational Events in Continuous-time Networks

Hadeel Soliman¹ Lingfei Zhao² Zhipeng Huang¹ Subhadeep Paul² Kevin S. Xu¹

¹Department of Electrical Engineering and Computer Science, University of Toledo, Toledo, OH.

²Department of Statistics, The Ohio State University, Columbus, OH.

Motivation

- The Multivariate Community Hawkes (MULCH):
 - Flexible model for continuous-time networks that introduces dependence between node pairs in a controlled manner.

Continuous-time networks:

- Events between node pairs (i,j) at time t^{ij}
- Ex: messages between users on social media.

Motivation

- The Multivariate Community Hawkes (MULCH):
 - Flexible model for continuous-time networks that introduces dependence between node pairs in a controlled manner.
- Continuous-time networks:
 - Events between node pairs (i,j) at time t^{ij}
 - Ex: messages between users on social media.

• Goal: Analyze interactions between nodes and simulate realistic networks.

Background: Multivariate Hawkes Process

- Multivariate Hawkes Process :
 - **Temporal point process** generates a sequence of timestamps $\{t_1, t_2, ..., \}$.
 - Self and Mutually-exciting temporal processes.
 - Event in one process excites future events in self and other processes.

Background: Multivariate Hawkes Process

- Multivariate Hawkes Process :
 - **Temporal point process** generates a sequence of timestamps $\{t_1, t_2, \dots, \}$.
 - Self and Mutually-exciting temporal processes.
 - Event in one process excites future events in self and other processes.
- Network Setup
 - node pairs (i, j) = processes
 - An Event between (i,j) (dashed) \rightarrow future events in both (i,j) and (j,i) (solid).

$$\{t_1^{ij}, t_2^{ij}, ..., \}$$

$$\{t_1^{ji}, t_2^{ji}, ..., \}$$

Background: Multivariate Hawkes Process

• Intensity function: instantaneous rate of events at time t

• Intensity of a node pair (i, j) – exponential kernel:

$$\lambda_{ij}(t) = \mu_{ij} + \sum_{(x,y)} \alpha^{xy \to ij} \sum_{s: t_s^{xy} < t} \beta e^{\beta(t - t_s^{xy})}$$

 μ_{ij} : baseline intensity

 $\alpha^{xy \to ij}$: excitation from (x, y) to (i, j)

 β : exponential decay rate

Problem!

$$\lambda_{ij}(t) = \mu_{ij} + \sum_{(x,y)} \alpha^{xy \to ij} \sum_{s: t_s^{xy} < t} \beta e^{\beta(t - t_s^{xy})}$$

- For a directed network with n nodes:
 - Number node pairs = $n(n-1) \approx n^2$
 - Excitation matrix $\alpha \approx n^2 \times n^2$
 - Intractable even for n = 100 nodes!

Excitation matrix

- 1. Adapted from Stochastic Block Model (SBM), assume K blocks/communities:
 - Each node $i \in block a$
 - Each node pair $(i, j) \in \text{block pair } (a, b)$

- 1. Adapted from Stochastic Block Model (SBM), assume K blocks/communities:
 - Each node $i \in block a$
 - Each node pair $(i, j) \in \text{block pair } (a, b)$

2. A node pair $(i, j) \in \text{block pair } (a, b) \text{ can only be excited by node pairs in block pair } (a, b) & \text{block pair } (b, a)$

- 3. Inspired by research in social sciences, we model **6 types of excitation**:
- Example:
 - Nodes 1-5 in block a
 - Nodes 6-8 in block b
 - Message between (1,8)

- 3. Inspired by research in social sciences, we model **6 types of excitation**:
- Example:
 - Nodes 1-5 in block a
 - Nodes 6-8 in block b
 - Message between (1,8)
 - > 1 to 8 (self)

- 3. Inspired by research in social sciences, we model **6 types of excitation**:
- Example:
 - Nodes 1-5 in block a
 - Nodes 6-8 in block b
 - Message between (1,8)
 - > 1 to 8 (self)
 - ➤ 8 to 1 (Reciprocal)

- 3. Inspired by research in social sciences, we model **6 types of excitation**:
- Example:
 - Nodes 1-5 in block a
 - Nodes 6-8 in block b
 - Message between (1,8)
 - > 1 to 8 (self)
 - ➤ 8 to 1 (Reciprocal)
 - ➤ 1 to 6 and 7 (Turn continuation)

- 3. Inspired by research in social sciences, we model **6 types of excitation**:
- Example:
 - Nodes 1-5 in block a
 - Nodes 6-8 in block b
 - Message between (1,8)
 - > 1 to 8 (self)
 - ➤ 8 to 1 (Reciprocal)
 - ➤ 1 to 6 and 7 (Turn continuation)
 - ➤ Other three (Generalized reciprocity, Allied continuation, Allied reciprocity)

What have we gained?

• Estimation: spectral clustering with a likelihood refinement procedure

- 1. Community/block detection.
- 2. Excitation matrix has a diagonal structure (sparser).
- 3. Meaningful estimated parameters.

Results: Predictive Accuracy

- Split dataset into 0.8 train: 0.2 test
- Predictive log-likelihood $\mathcal L$ score:

$$test \mathcal{L} = \frac{(full \mathcal{L} - train \mathcal{L})}{number of test events}$$

Model	Reality	Enron	MID	Facebook
MULCH	-3.82	-5.13	-3.53	-6.82
внм	-5.37	-7.49	-5.33	-14.4
CHIP	-4.83	-5.61	-3.67	-9.46
REM	-6.11	-6.84		
ADM4	-8.52			
DLS	-5.65	-7.57	-4.52	

Results: Generative Accuracy

• Compare counts of temporal motifs on Reality Mining

Photo credit: Paranjape, A., Benson, A. R., and Leskovec, J. Motifs in temporal networks. In Proceedings of the 10th ACM International Conference on Web Search and Data Mining, pp. 601–610, 2017.

Case Study: Militarized Interstate Disputes dataset

Thank you!

• Code: https://github.com/IdeasLabUT/Multivariate-Community-Hawkes

