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Motivation

e The focus of the CL literature is mainly on algorithms rather than the
model/architecture
e A typical Setup in Continual Learning:
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[ Algorithm 1 The algorithm controls the train-loop:
* regularization

* replay
* parameter-isolation

[ Model ] Often, the model is assumed to be fixed




What Will Happen If We Use Wider Networks?
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What Will Happen If We Use Wider Networks?
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Why?

e |[sit because of the parameters?
o Wider model — more parameters — larger capacity — less forgetting?
o Increasing the depth can also be helpful (?)



Forgetting (Task 1)

What Will Happen If We Use Deeper Networks?
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Theoretical Explanation

e A very simple theoretical analysis:
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Claim 4.1 (informal). Consider learning problems with input space R, output space R, and squared loss.
Let F1 be the class of linear models that maps the input to the output and Fo be the class of two-layer
linear networks (i.e., no nonlinear activation). Then, there exist two tasks such that when we train task
2 using gradient descent, if we use model class Fi, the amount of forgetting for task 1 is strictly zero;
whereas if we use model class Fz, the amount of forgetting can be positive.



Empirical Explanations

Gradient orthogonalization Gradient sparsity
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Experiment: Width vs Depth

MLP on Rotated MNIST

WRN on Split CIFAR-100

. Average Average Joint
Width  Depth  Parameters Accuracy Forgetting Accuracy
128 8 217.35K 68.9 £1.07 354+1.34 94.1+0.73
256 2 269.32K  71.1+0.43 31.44+0.48 939 +0.65
256 8 664.08 K 70.4 +0.61 32.1 £0.75  94.78 £0.67
512 2 669.70K  72.6 £0.27 29.6+0.36 94.08 +0.77

. Average Average Joint
Depth  Width  Farams Accuracy Forgetting Accuracy
10 4 1.69M 53.8+2.74 33.8+£2.16 83.4+0.64
28 2 1.61M _ 46.6 +2.56 37.1 +£2.47  83.6 0.54
10 8 372M  59.7+2.33 2944252 84.8+0.49
16 4 324M  50.1 +£2.59 37.0+2.77  85.1 £0.45
28 3 3.58M 494 +1.82 36.2 +1.98  84.7 £0.92




Experiment: Interacting with Other Algorithms
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Follow-up Work : Beyond Width & Depth

e What about other architectures & other Benchmarks?

Average Learning Accuracy
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“Architecture Matters in Continual Learning”, https://arxiv.org/abs/2202.00275 1



https://arxiv.org/abs/2202.00275

Conclusion

Instead of focusing on algorithms, let’s focus on models & architectures

Increasing the width can reduce the forgetting in continual learning by:
o Increasing the gradient orthogonality
o Increasing the gradient sparsity
o Having a lazier training regime

The findings hold for other CL algorithms, architectures, and benchmarks.

We hope our work draws more attention to the research at the intersection of continual
learning and neural network architectures.
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Thank You!
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