

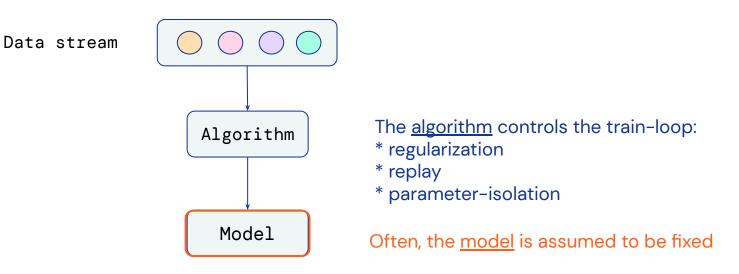
Wide Neural Networks Forget Less Catastrophically

Seyed Iman Mirzadeh^{*1}, Arslan Chaudhry^{†2}, Dong Yin², Huiyi Hu², Razvan Pascanu², Dilan Gorur², Mehrdad Farajtabar^{†2}

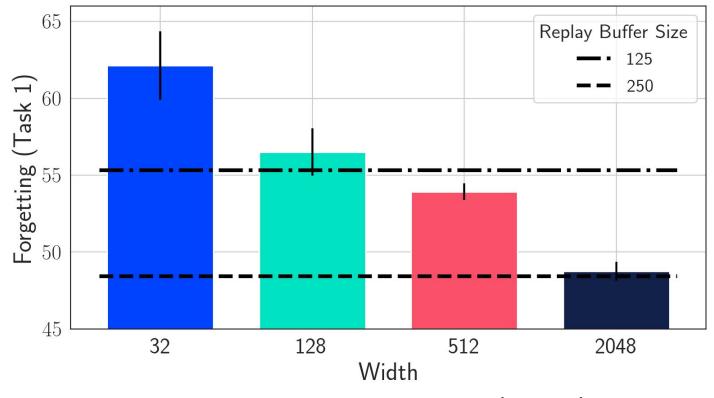
*Work done during an internship at DeepMind. [†]Equal Advising ¹Washington State University, ²DeepMind

Motivation

- The focus of the CL literature is mainly on **algorithms** rather than the **model/architecture**
- A typical Setup in Continual Learning:

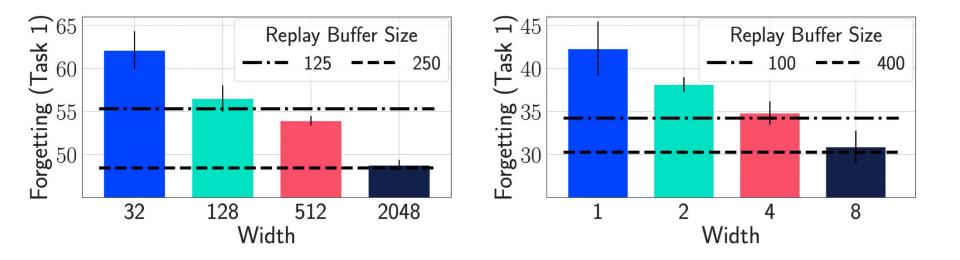


What Will Happen If We Use <u>Wider</u> Networks?



MLP with 2 layers, Rotated MNIST (5 tasks)

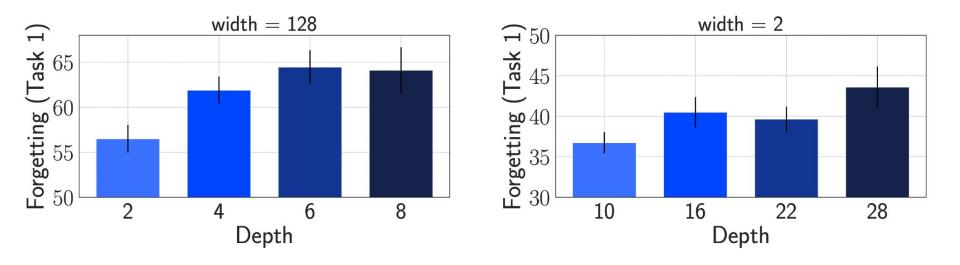
What Will Happen If We Use <u>Wider</u> Networks?



WRN-10-W on Split CIFAR-100

- Is it because of the parameters?
 - \circ Wider model \rightarrow more parameters \rightarrow larger capacity \rightarrow less forgetting?
 - Increasing the depth can also be helpful (?)

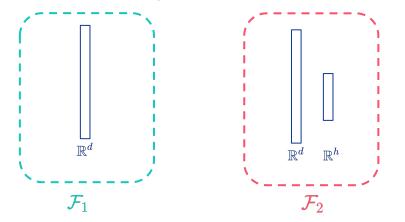
What Will Happen If We Use <u>Deeper</u> Networks?



WRN-D-2 on Split CIFAR-100

Theoretical Explanation

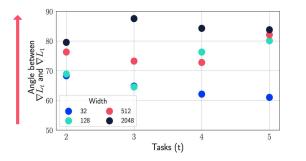
• A very simple theoretical analysis:



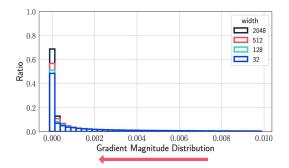
Claim 4.1 (informal). Consider learning problems with input space \mathbb{R}^d , output space \mathbb{R} , and squared loss. Let \mathcal{F}_1 be the class of linear models that maps the input to the output and \mathcal{F}_2 be the class of two-layer **linear** networks (i.e., no nonlinear activation). Then, there exist two tasks such that when we train task 2 using gradient descent, if we use model class \mathcal{F}_1 , the amount of forgetting for task 1 is strictly zero; whereas if we use model class \mathcal{F}_2 , the amount of forgetting can be positive.

Empirical Explanations

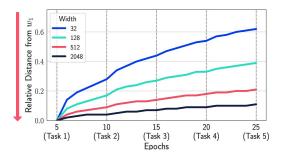
Gradient orthogonalization



Gradient sparsity



Lazy training regime



Experiment: Width vs Depth

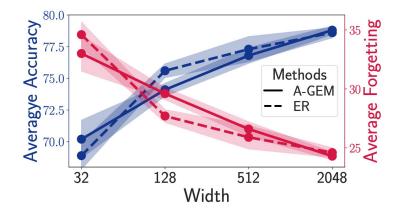
MLP on Rotated MNIST

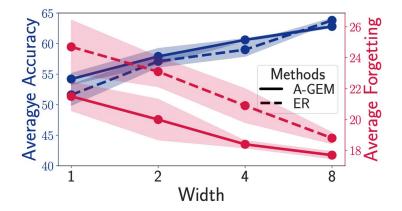
WRN on Split CIFAR-100

Width	Depth	Parameters	Average Accuracy	Average Forgetting	Joint Accuracy
128	8	217.35 K	68.9 ± 1.07	35.4 ± 1.34	94.1 ± 0.73
256	2	269.32 K	71.1 \pm 0.43	31.4 ± 0.48	93.9 ± 0.65
256	8	664.08 K	70.4 ± 0.61	$32.1 \pm 0.75 \\ 29.6 \pm 0.36$	94.78 ± 0.67
512	2	669.70 K	72.6 \pm 0.27		94.08 ± 0.77

Depth	Width	Params	Average Accuracy	Average Forgetting	Joint Accuracy
10	4	1.69 M	53.8 ± 2.74	33.8 ± 2.16	83.4 ± 0.64
28	2	1.61 M	46.6 ± 2.56	37.1 ± 2.47	83.6 ± 0.54
10	8	3.72 M	59.7 ± 2.33	29.4 ± 2.52	84.8 ± 0.49
16	4	3.24 M	50.1 ± 2.59	37.0 ± 2.77	85.1 ± 0.45
28	3	3.58 M	49.4 ± 1.82	36.2 ± 1.98	84.7 ± 0.92

Experiment: Interacting with Other Algorithms

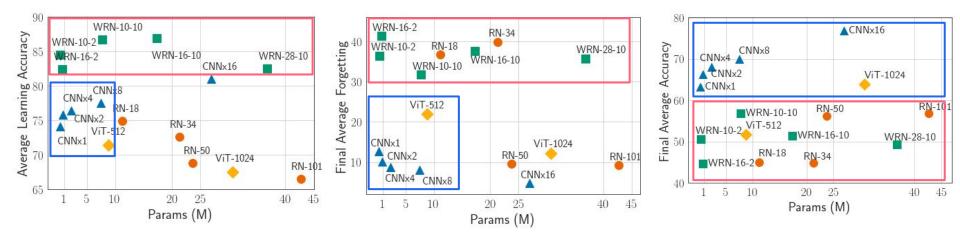




WRN on Split CIFAR-100

Follow-up Work : Beyond Width & Depth

• What about other architectures & other Benchmarks?



Learning Accuracy: The accuracy for each task directly after it is learned.

Forgetting: the difference between the peak accuracy and the final accuracy of each task.

Average Accuracy: the average of validation accuracies, after learning all tasks.

"Architecture Matters in Continual Learning", https://arxiv.org/abs/2202.00275

Conclusion

- Instead of focusing on <u>algorithms</u>, let's focus on <u>models & architectures</u>
- Increasing the width can reduce the forgetting in continual learning by:
 - Increasing the gradient orthogonality
 - Increasing the gradient sparsity
 - Having a lazier training regime
- The findings hold for other CL algorithms, architectures, and benchmarks.
- We hope our work draws more attention to the research at the intersection of continual learning and neural network architectures.

Thank You!

Poster: Hall E #628

