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Introduction

- Transformers as very powerful architectures for many Machine Learning

tasks
- Capability of handling long sequences
Presence of context-dependent weights from attention mechanism
- Hypothesis:
- These two properties suit the central role of a meta-RL agent

- Task Inference from a sequence of sampled episode trajectories
- Policy Fast Adaptation Strategy — Self-Attention

- Proposal:
- Transformers for Meta-Reinforcement Learning (TrMRL)
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Transformers as a Memory System

- Task Representation: distribution  »(¢) A
over working memories:

T(¢): @ — [0,00) B

- Working Memory: parameterized
function ¢.(s¢, ae,re,mt)

- Starting from recent working memories, transformer implements memory

reinstatement for episodic memory retrieval

- Areminder procedure that reintroduces past elements in advance of a long-term retention test
(Rovee-Collier, 2012)
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TrMRL: Transformers for Meta-RL
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Memory Reinstatement

- Transformer architecture recursively refines the episodic memory interacting
memories retrieved from the past layer:

ei — f(ef)_l, .. ,ei_l)

- This refinement is guaranteed by a crucial property of the self-attention
mechanism: it computes a consensus representation across the input
memories associated to the sub-trajectory

- Consensus representation is the memory representation that is closest
on average to all likely representations (Kumar & Byrne, 2004), i.e.,
minimizes the Bayes risk considering the set of memories.
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Stabilizing Transformer for Meta-RL

- Problem: Optimize transformers is often unstable
- Especially in the context of RL gradients

- For RL + Transformers, we need to reconcile initial exploration with the early

stages of transformer training
- Crucial for environments where initially learned behaviors must guide exploration to
prevent poor policies

- Proposal: Apply a proper weight initialization scheme: T-Fixup (Huang et. al.,
2020)
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Results: Meta-Training
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Results: Out-of-Distribution Evaluation

OOD Evaluation - HalfCheetahVel

2
©
2
K3
5300
o
©
g -350

1l 2 3 4
episodes

—— TrMRL (ours) ~—— MAML-TRPO —— RL2-PPO —— PEARL —— VariBAD]

Transformers are Meta-Reinforcement Learners




Additional Results

Latent Visualization:
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Ablations:

Ablation Study: T-Fixup

MetaWorld-ML1-Reach-v2

HalfCheetahVel

0
10
08l =100
06 g2
N 3
k]
o
g
g
04 Z -300
021 —400
oo} i ~so0 (] i
0 1 2 3 3 S & 0.0 02 0.4 0.6 08 10
timesteps 1e6 timesteps 1e7
— enabled — dlsabledJ

... and many more!
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Source code: https://github.com/luckeciano/transformers-metarl
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