Transformers are Meta-Reinforcement Learners

Luckeciano Melo

Microsoft, USA and Center of Excellence in Artificial Intelligence, Brazil

Introduction

- Transformers as very powerful architectures for many Machine Learning tasks
 - Capability of handling long sequences
 - Presence of context-dependent weights from attention mechanism
- Hypothesis:
 - These two properties suit the central role of a meta-RL agent
 - Task Inference from a sequence of sampled episode trajectories
 - Policy Fast Adaptation Strategy → Self-Attention
- Proposal:
 - Transformers for Meta-Reinforcement Learning (TrMRL)

Transformers as a Memory System

- Task Representation: distribution over working memories:

$$\mathcal{T}(\phi): \Phi \to [0,\infty)$$

- Working Memory: parameterized function $\phi_t(s_t, a_t, r_t, \eta_t)$

- Starting from recent working memories, transformer implements memory reinstatement for episodic memory retrieval
 - A reminder procedure that reintroduces past elements in advance of a long-term retention test (Rovee-Collier, 2012)

TrMRL: Transformers for Meta-RL

Memory Reinstatement

- Transformer architecture recursively refines the episodic memory interacting memories retrieved from the past layer:

$$e_t^l = f(e_0^{l-1}, \dots, e_t^{l-1})$$

- This refinement is guaranteed by a crucial property of the self-attention mechanism: it computes a consensus representation across the input memories associated to the sub-trajectory
 - Consensus representation is the memory representation that is closest on average to all likely representations (Kumar & Byrne, 2004), i.e., minimizes the Bayes risk considering the set of memories.

Stabilizing Transformer for Meta-RL

- Problem: Optimize transformers is often unstable
 - Especially in the context of **RL gradients**
- For RL + Transformers, we need to reconcile initial exploration with the early stages of transformer training
 - Crucial for environments where initially learned behaviors must guide exploration to prevent poor policies
- Proposal: Apply a proper weight initialization scheme: T-Fixup (Huang et. al., 2020)

Results: Meta-Training

Results: Out-of-Distribution Evaluation

Additional Results

Latent Visualization:

Ablations:

... and many more!

Transformers are Meta-Reinforcement Learners

Source code: https://github.com/luckeciano/transformers-metarl

Luckeciano Melo

Twitter:

@LuckecianoMelo

