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Revisit Adversarial Attacks
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e Most existing attacks search adversarial examples in the input space (e.g., via
gradient ascent)

e Cannot generally converge to the global optimal; need good initialization; we
cannot systematically enumerate the continuous input space
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Do We Have Strong Enough Attacks?

e (Can try to either verify (guaranteed robust) or attack each example (guaranteed
vulnerable)?

e We often cannot precisely characterize the robustness of a model (even for
small models): there exists a gap between verification and attacks

e SOTA verifiers have made a good progress recently (VNN-COMP 2021)
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MIP Formulation in Activation Space for Attacks

e For RelLU networks, it is possible to encode an adversarial attack as a Mixed
Integer Programming problem (Tjeng et al., 2018)

e An adversarial example can be represented in activation space (set of binary
variables representing ReLUs), which is discrete and can be systematically

enumerated
e A MIP solver can search in activation space, but is often slow
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Our Branch and Bound Attack
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Searching Attacks in Activation Space

e Systematically searching in activation space using branch and bound
e Each ReLU neuron can be split into the s=0 and s=1 cases

e NN output can be lower bounded after each split

No split
@ Adversarial examples located at leaves
. -
Split ReLU with bounds <=0
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Split ReLU 2 Challenge: searching in activation space

PR can be slow with many ReLU neurons
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Leaf nodes: all binary va.riables have been fixed
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A Branch and Bound Framework for Stronger Adversarial Attacks



Our Strategies: Beam Search with NN Verifiers

e Challenge: how to reach leaf nodes quickly to
locate adv. examples? T

expands to 4

e Strategy 1: use beam search guided by neur: o el
network verifiers 81{: . o1

e Benefits:

o Prioritize most promising subdomains, ging domains
reducing search space

o GPU acceleration with bound

propagation based NN verifiers (e.g., a, /v v\
B-CROWN) 04) (01 (oof)cyerare

Leaf nodes: all binary variables have been fixed
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Our Strategies: Diving

e Strategy 2: Go deeper in the search train by
fixing more variables at once, based on Beam search
statistics on adversarial candidates (e.g.,
common activation patterns)

e Benefits:
L . . s
o Utilize information from adversarial ‘ * i Split ReLU 2
candidates generated from cheap attacks
(e.g.’ PGD) | Fix more variables
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Our Strategies: Local Search

e Strategy 2: Go deeper in the search train by
fixing more variables at once, based on
statistics on adversarial candidates (e.g.,
common activation patterns)

1.8
e Strategy 3: Local search in activation spa

around an adversarial candidate

Adversarial
example

Leaf nodes: aI'I' binary variables have been fixed
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Results (BaB Attack vs. Input Space Attacks)

e Results on hard instances (cannot be verified by any NN verifiers, and cannot
be attacked by 1000-step PGD with 500 restarts + AutoAttack)
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Results

Results (BaB Attack vs. MIP-based Attack)

e Solve the MIP formulation for attack directly can be quite slow (no GPU

acceleration, no information from cheap attacks)

e Faster and often can find more adversarial examples
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Thank You

Thank you!

Email: huan@huan-zhang.com

BaB-attack has been integrated as part of our a,

B-CROWN Verification Tool:
abCROWN.org

Interested in NN verification? Attend the ICML Workshop on
Formal Verification of Machine Learning on July 22 (Friday)
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