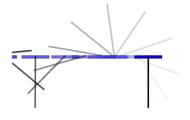
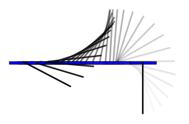
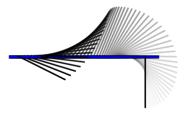
Distributional Hamilton-Jacobi-Bellman Equations for Continuous-Time Reinforcement Learning

Harley Wiltzer David Meger Marc G. Bellemare

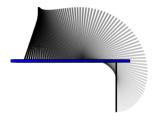





Control frequency: ω


Control frequency: 2ω

Control frequency: 5ω



Control frequency: 10ω

▶ Challenge: learn a value function that converges as $\omega \uparrow \infty$.

Control frequency: 10ω

- ▶ Challenge: learn a value function that converges as $\omega \uparrow \infty$.
- Characterized by the HJB Equation:

$$\boldsymbol{V}^{\pi}(\boldsymbol{x})\log\gamma + r(\boldsymbol{x}) + \langle \nabla \boldsymbol{V}^{\pi}(\boldsymbol{x}), \mu_{\pi}(\boldsymbol{x}) \rangle + \frac{1}{2}\mathsf{Tr}(\sigma_{\pi}(\boldsymbol{x})^{\top}\mathsf{H}\boldsymbol{V}^{\pi}(\boldsymbol{x})\sigma_{\pi}(\boldsymbol{x})) = 0$$

Contribution 1: The Distributional HJB Equation

► Goal: rather than learn the expected return, learn the return distribution.

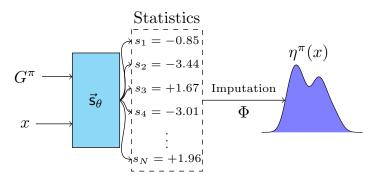
Contribution 1: The Distributional HJB Equation

► Goal: rather than learn the expected return, learn the return distribution.

$$V^{\pi}(x)\log\gamma + r(x) + \langle \nabla V^{\pi}(x), \mu_{\pi}(x) \rangle + \frac{1}{2} \mathsf{Tr}(\sigma_{\pi}(x)^{\top} \mathsf{H} V^{\pi}(x) \sigma_{\pi}(x)) = 0 \tag{HJB}$$

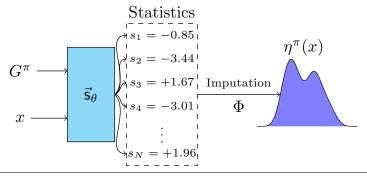
Contribution 1: The Distributional HJB Equation

► Goal: rather than learn the expected return, learn the return distribution.


$$V^{\pi}(x)\log \gamma + r(x) + \langle \nabla V^{\pi}(x), \mu_{\pi}(x) \rangle + \frac{1}{2} \text{Tr}(\sigma_{\pi}(x)^{\top} H V^{\pi}(x) \sigma_{\pi}(x)) = 0$$
(HJB)

$$\Downarrow$$

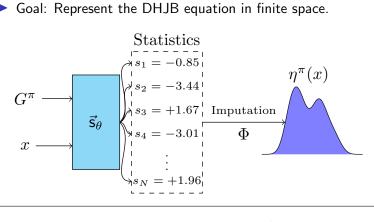
$$\begin{split} \langle \nabla_x F_{\eta^{\pi}}(x,z), \mu_{\pi}(x) \rangle - (r(x) + z \log \gamma) \frac{\partial}{\partial z} F_{\eta^{\pi}}(x,z) \\ + \frac{1}{2} \mathsf{Tr}(\sigma_{\pi}(x)^{\top} \mathsf{H}_x F_{\eta^{\pi}}(x,z) \sigma_{\pi}(x)) = 0 \end{split} \tag{DHJB}$$


Contribution 2: The Statistical HJB Loss

► Goal: Represent the DHJB equation in finite space.

Contribution 2: The Statistical HJB Loss

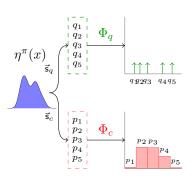
► Goal: Represent the DHJB equation in finite space.



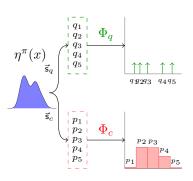
$$\nabla_{\vec{\mathbf{s}}(x)} \Phi(\vec{\mathbf{s}}(x), z)^{\top} J \vec{\mathbf{s}}(x) \mu_{\pi}(x) - (r(x) + z \log \gamma) \frac{\partial}{\partial z} \Phi(\vec{\mathbf{s}}(x), z)$$

$$+ \frac{1}{2} \operatorname{Tr} \left[\sigma_{\pi}(x)^{\top} \left(\mathbf{K}_{\Phi}^{x}(x, z) + \mathbf{K}_{\Phi}^{s}(x, z) \right) \sigma_{\pi}(x) \right] \xrightarrow{N \uparrow \infty} 0$$
(SHJB)

Contribution 2: The Statistical HJB Loss


Goal: Represent the DHJB equation in finite space.

$$\nabla_{\vec{\mathbf{s}}(x)} \Phi(\vec{\mathbf{s}}(x), z)^{\top} \mathbf{J} \vec{\mathbf{s}}(x) \mu_{\pi}(x) - (r(x) + z \log \gamma) \frac{\partial}{\partial z} \Phi(\vec{\mathbf{s}}(x), z)$$


$$+ \frac{1}{2} \operatorname{Tr} \left[\sigma_{\pi}(x)^{\top} \underbrace{(\mathbf{K}_{\Phi}^{x}(x, z) + \mathbf{K}_{\Phi}^{s}(x, z))}_{\text{"Spatial \& Statistical Diffusivity"}} \sigma_{\pi}(x) \right] \xrightarrow{N \uparrow \infty} 0$$
(SHJB)

Diffusivities of some common imputation strategies

▶ When Φ_q is the *quantile imputation strategy*, the statistical diffusivity vanishes.

Diffusivities of some common imputation strategies

- ▶ When Φ_q is the *quantile imputation strategy*, the statistical diffusivity vanishes.
- And when Φ_c is the *categorical imputation strategy*, the SHJB is very complex.

The Quantile Case

We show that, when return distributions are represented as empirical distributions,

$$\begin{cases} \langle \nabla_x \vec{\mathbf{s}}_k(x), \mu_\pi(x) \rangle + r(x) + \vec{\mathbf{s}}_k(x) \log \gamma + \frac{1}{2} \mathrm{Tr} \left(\sigma_\pi(x)^\top \mathsf{H}_x \vec{\mathbf{s}}_k(x) \sigma_\pi(x) \right) = 0 \\ \vec{\mathbf{s}}_k(x) = F_{\eta^\pi}^{-1}(\hat{\tau}_k) \\ \hat{\tau}_k = \frac{k - \frac{1}{2}}{N} \\ k \in [N] \end{cases}$$

The Quantile Case

We show that, when return distributions are represented as empirical distributions,

$$\begin{cases} \overbrace{\langle \nabla_x \vec{\mathbf{s}}_k(x), \mu_\pi(x) \rangle + r(x) + \vec{\mathbf{s}}_k(x) \log \gamma + \frac{1}{2} \mathrm{Tr} \left(\sigma_\pi(x)^\top \mathbf{H}_x \vec{\mathbf{s}}_k(x) \sigma_\pi(x) \right) = 0} \\ \vec{\mathbf{s}}_k(x) = F_{\eta^\pi}^{-1} (\hat{\tau}_k) \\ \hat{\tau}_k = \frac{k - \frac{1}{2}}{N} \\ k \in \{1, 2, \dots, N\} \end{cases}$$

The Quantile Case

We show that, when return distributions are represented as empirical distributions,

$$\begin{cases} \overbrace{\langle \nabla_x \vec{\mathbf{s}}_k(x), \mu_\pi(x) \rangle + r(x) + \vec{\mathbf{s}}_k(x) \log \gamma + \frac{1}{2} \mathrm{Tr} \left(\sigma_\pi(x)^\top \mathsf{H}_x \vec{\mathbf{s}}_k(x) \sigma_\pi(x) \right) = 0} \\ \vec{\mathbf{s}}_k(x) = F_{\eta^\pi}^{-1}(\hat{\tau}_k) \\ \hat{\tau}_k = \frac{k - \frac{1}{2}}{N} \\ k \in \{1, 2, \dots, N\} \end{cases}$$

Notably, distributional dynamic programming reduces to dynamic programming.

Thanks!

Check out our poster, #4711, to learn more.