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Continuous-Time Reinforcement Learning

Control frequency: 10w

» Challenge: learn a value function that converges as w 1 oco.
» Characterized by the HJB Equation:

V7(x)logy + r(x) + (VV7(2), px (z)) + %TV(Uw(m)THV”(ﬂf)Uw(w)) =0



Contribution 1: The Distributional HJB Equation

» Goal: rather than learn the expected return, learn the return
distribution.
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Contribution 1: The Distributional HJB Equation

» Goal: rather than learn the expected return, learn the return
distribution.

V™ (z)logy + r(z) + (VV™(2), pr(x)) + %Tr(aﬂ(x)THV"(x)aw(x)) =0
(HJB)
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(Ve Fyr (2, 2), 12 (2) = (r(z) + 210g7) 5 Fye (2, 2)
) (DHJB)
+ §Tr(aﬂ(x)THanw (z,2)ox()) =0



Contribution 2: The Statistical HJB Loss

» Goal: Represent the DHJB equation in finite space.
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» Goal: Represent the DHJB equation in finite space.
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Contribution 2: The Statistical HJB Loss

» Goal: Represent the DHJB equation in finite space.

Statistics
[y I
r>|81:—0.85| 7r( )
I I T
S0 = —3.44! "
Gﬂ- — | |
.  S3 = —|—1.67: Imputation
S 1
9 sq = —3.01
T —— :
I
I I

________

Vi) 8 (@), 2) " J8(@)pin (z) = (r(z) + 2 log 7)%‘?(5(96), z) (SHJB)

+ %Tr on(x) " (Ki(z,2) + Ky (2, 2)) on(2) kg
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Diffusivities of some common imputation strategies
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» When ®, is the quantile imputation strategy, the statistical
diffusivity vanishes.
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» When ®, is the quantile imputation strategy, the statistical
diffusivity vanishes.

» And when @, is the categorical imputation strategy, the SHJB
is very complex.



The Quantile Case

We show that, when return distributions are represented as
empirical distributions,
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The Quantile Case

We show that, when return distributions are represented as
empirical distributions,

The HJB Equation!
" o 1 o
(VS (), i (2)) + 7(@) +5(x) log v + S Tr (0 (2) "HaSk ()0 (7)) = 0
Sk(w :Frﬁl(Ak)
. k—1
Tk = N2
ke{l,2,...,N}

» Notably, distributional dynamic programming reduces to
dynamic programming.



Thanks!

Check out our poster, #4711, to learn more.



