Paper ID: 1691

Beyond Images: Label Noise Transition Matrix Estimation for Tasks with Lower-Quality Features

Zhaowei Zhu, Jialu Wang, Yang Liu

UC Santa Cruz

Code

{**zwzhu**, faldict, yangliu}@ucsc.edu

A Data-Centric Method

REsponsible & Accountable Learning (REAL) @ University of California, Santa Cruz

Noise Transition Matrix **T**

• Each element of **T**:

$$T_{ij} := \mathbb{P}(\widetilde{Y} = j | Y = i)$$

• Clean label $i \rightarrow Noisy label j$

Why we need T?

- **T** is important in many applications, e.g.
 - Learning noise-tolerant classifiers (Natarajan et al., 2013)
 - Corrupted label detection (Northcutt et al., 2021; Zhu et al., 2022)
 - Machine learning fairness (Lamy et al., 2019; Wang et al., 2021)
 - Crowdsourcing (Liu & Liu, 2015)
 - Medical applications (McCormick et al., 2016)

[1] Natarajan, N. et al. Learning with noisy labels. NeurIPS 2013.

[2] Northcutt, C. G. et al. Pervasive label errors in test sets destabilize machine learning benchmarks. NeurIPS 2021.

[3] Zhu, Z. et al. Detecting corrupted labels without training a model to predict. *ICML 2022*.

[4] Lamy, A. et al. Noise-tolerant fair classification. NeurIPS 2019.

[5] Wang, J. et al. Fair classification with group-dependent label noise. FAccT 2021.

[6] Liu, Y. and Liu, M. An online learning approach to improving the quality of crowdsourcing. SIGMETRICS 2015.

[7] McCormick, T. H. et al. Probabilistic cause-of-death assignment using verbal autopsies. JASA 2016.

BUT existing methods focus on image classifications

• Failures in tasks beyond images

Main reasons:

- Complicated task
- Lower-quality features

HOC: Z. Zhu, Y. Song, Y. Liu. Clusterability as an alternative to anchor points when learning with noisy labels. *ICML* 2021.
CL: Northcutt, C., Jiang, L., and Chuang, I. Confident learning: Estimating uncertainty in dataset labels. *JAIR* 2021.
T-Revision: Xia, X. et al. Are anchor points really indispensable in label-noise learning? *NeurIPS* 2019.

f-MI: f-mutual information

Our Contributions

Highlights:

- ✓ Reweighting mechanism (Sec. 3)
- ✓ Get proper weights with only noisy labels: Noisy f-MI \rightarrow Clean f-MI (Sec. 4)

We build on HOC

Benefits:

- 1. Avoid complicated hyperparameters tuning
- 2. Build light tool for more general applications

A Data-Centric Method

What is HOC?

Features that satisfy 2-NN label clusterability

• Check *label consensuses* of 2-NN features

Questions:

- ➡ Features with clusterability (our focus)

HOC: Z. Zhu, Y. Song, Y. Liu. Clusterability as an alternative to anchor points when learning with noisy labels. ICML 2021

Improve Clusterability

• Challenge:

 \blacktriangleright Lower-quality features \rightarrow poor clusterability

Find a similarity measure that improves clusterability

- Intuition: Downweight less informative parts by matrix W
- Solution: Soft cosine similarity (Definition 3.1)

$$\mathsf{Sim}_{\boldsymbol{W}}(\boldsymbol{x},\boldsymbol{x}') = \frac{(\sqrt{\boldsymbol{W}}\boldsymbol{x})^\top (\sqrt{\boldsymbol{W}}\boldsymbol{x}')}{\|\sqrt{\boldsymbol{W}}\boldsymbol{x}\|_2 \|\sqrt{\boldsymbol{W}}\boldsymbol{x}'\|_2}$$

Property of W

• Symmetric: $Sim_W(x, x') = Sim_W(x', x)$

- **Correlation** monotone (between different elements of *X*)
 - (off-diagonal) Less correlated parts have lower weights

Remove correlation

• **Information** monotone (between *X*, *Y*)

(diagonal) Less informative parts have lower weights

Noisy f-MI → Clean f-MI

III, ZHNIH I,RI

How does noisy *f*-MI affect? We care about the information monotone!

Definition 4.1 (ϵ -Order-Preserving Under Label Noise) (Sketch) **Noisy** f-MI preserves the same order as **clean** f-MI with tolerance ϵ .

Binary classifications:

Theorem 4.4 (Total-Variation) Total-Variation is 0-Order-Preserving.

Theorem 4.5 (KL-Divergence)

KL Divergence is ϵ -Order-Preserving, where

 $\epsilon = e_1[\delta \log \delta - (1 + \delta) \log(1 + \delta)] + H(e_1), \quad e_1 = \delta e_2.$

UC SANTA CRUZ

Estimation Error \downarrow

UC SANTA CRUZ

TEXT DATASETS		Метнор							
$(d, [N_1, \cdots, N_K])$	NOISE RATE	T-REV	CL	HOC	OURS-X-KL	OURS- X -TV	OURS-A-KL	OURS- A -TV	
AG's news (BERT) (768, [30к × 4])	Low Medium High	10.38 10.71 13.97	11.41 10.63 13.82	13.32 10.62 6.80	12.65 10.13 6.83	12.75 10.45 6.69	8.36 6.44 4.54	8.35 6.52 4.19	
DBPEDIA (BERT) (768, [40k × 14])	Low Medium High	6.80 14.91 24.23	5.31 14.40 23.28	7.57 6.30 6.00	6.76 5.66 5.18	6.94 5.78 5.22	2.52 2.33 2.42	2.52 2.28 2.43	
Yelp-5 (BERT) (768, [130k × 5])	Low Medium High	38.49 35.46 21.20	38.75 36.05 20.88	40.87 33.63 19.09	40.71 34.23 18.56	40.58 33.88 20.13	37.37 31.79 18.11	37.19 31.94 18.06	
JIGSAW (BERT) (768, [144,277, 15,294])	Low Medium High	20.92 17.10 7.19	20.17 16.44 6.81	14.25 11.28 4.84	14.07 11.80 4.85	14.24 12.23 3.43	9.76 7.45 0.78	9.97 7.66 1.02	

Consistent improvement under BERT embeddings.

Experiments

• Downstream applications: Learn a noise-consistent classifier

Метнор	AG'S NEWS LAST BEST		DBPEDIA Last Best		Test Accuracy
HOC (ZHU ET AL., 2021C)	82.17	83.08	91.06	91.06	
Ours-A-TV	85.01	85.17	97.71	97.77	

Beyond Images: Label Noise Transition Matrix Estimation for Tasks with Lower-Quality Features

Thank you !

Hall E #517

Want to know more?

- 1. Scan the QR code to reproduce
- 2. Join our onsite poster session

Code

REsponsible & Accountable Learning (REAL) @ University of California, Santa Cruz